Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2012
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2012 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Article . 2016
Data sources: HKU Scholars Hub
HKU Scholars Hub
Article . 2013
Data sources: HKU Scholars Hub
versions View all 5 versions

Eya1-Six1 Interaction Is Sufficient to Induce Hair Cell Fate in the Cochlea by Activating Atoh1 Expression in Cooperation with Sox2

Authors: Ahmed, M; Xu, J; Xu, PX; Wang, F; Wong, EYM; Sun, J;

Eya1-Six1 Interaction Is Sufficient to Induce Hair Cell Fate in the Cochlea by Activating Atoh1 Expression in Cooperation with Sox2

Abstract

Inner-ear hair cell differentiation requires Atoh1 function, while Eya1, Six1, and Sox2 are coexpressed in sensory progenitors and mutations in these genes cause sensorineural hearing loss. However, how these genes are linked functionally and the transcriptional networks controlling hair cell induction remain unclear. Here, we show (1) that Eya1/Six1 are necessary for hair cell development, and their coexpression in mouse cochlear explants is sufficient to induce hair cell fate in the nonsensory epithelium expressing low-level Sox2 by activating not only Atoh1-dependent but also Atoh1-independent pathways and (2) that both pathways induce Pou4f3 to promote hair cell differentiation. Sox2 cooperates with Eya1/Six1 to synergistically activate Atoh1 transcription via direct binding to the conserved Sox- and Six-binding sites in Atoh1 enhancers, and these proteins physically interact. Our findings demonstrate that direct and cooperative interactions between the Sox2, Six1, and Eya1 proteins coordinate Atoh1 expression to specify hair cell fate.

Related Organizations
Keywords

Homeodomain Proteins - Genetics - Metabolism, Embryo, Mammalian - Cytology - Metabolism, Basic Helix-Loop-Helix Transcription Factors - Genetics - Metabolism, Electrophoretic Mobility Shift Assay, Immunoenzyme Techniques, Mice, Basic Helix-Loop-Helix Transcription Factors, Developmental, Mutation - Genetics, Protein Tyrosine Phosphatases - Genetics - Metabolism, Phosphorylation, Auditory, Blotting, Intracellular Signaling Peptides and Proteins, Gene Expression Regulation, Developmental, Nuclear Proteins, Cell Differentiation, Intracellular Signaling Peptides And Proteins - Genetics - Metabolism, Cochlea, Mammalian - Cytology - Metabolism, Hair Cells, Soxb1 Transcription Factors - Genetics - Metabolism, Electroporation, Embryo, Western, 570, Chromatin Immunoprecipitation, Blotting, Western, Hair Cells, Auditory - Metabolism, 610, Research Support, N.I.H., Hair Cells, Auditory, Journal Article, Animals, Immunoprecipitation, Homeodomain Proteins, Mammalian, SOXB1 Transcription Factors, Extramural, Embryo, Mammalian, Cochlea - Cytology - Metabolism, Gene Expression Regulation, Mutation, Auditory - Metabolism, Protein Tyrosine Phosphatases, Nuclear Proteins - Genetics - Metabolism, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    217
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
217
Top 1%
Top 10%
Top 1%
hybrid