Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EMBO Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EMBO Reports
Article . 2004
versions View all 4 versions

Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint‐blind DNA damage

Authors: Redon, Christophe; Pilch, Duane R.; Rogakou, Emmy P.; Orr, Ann H.; Lowndes, Noel F.; Bonner, William M.;

Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint‐blind DNA damage

Abstract

Cells maintain genomic stability by the coordination of DNA‐damage repair and cell‐cycle checkpoint control. In replicating cells, DNA damage usually activates intra‐S‐phase checkpoint controls, which are characterized by delayed S‐phase progression and increased Rad53 phosphorylation. We show that in budding yeast, the intra‐S‐phase checkpoint controls, although functional, are not activated by the topoisomerase I inhibitor camptothecin (CPT). In a CPT‐hypersensitive mutant strain that lacks the histone 2A (H2A) phosphatidylinositol‐3‐OH kinase (PI(3)K) motif at Ser 129 (h2a‐s129a), the hypersensitivity was found to result from a failure to process full‐length chromosomal DNA molecules during ongoing replication. H2A Ser 129 is not epistatic to the RAD24 and RAD9 checkpoint genes, suggesting a non‐checkpoint role for the H2A PI(3)K site. These results suggest that H2A Ser 129 is an essential component for the efficient repair of DNA double‐stranded breaks (DSBs) during replication in yeast, particularly of those DSBs that do not induce the intra‐S‐phase checkpoint.

Keywords

replication, DNA Repair, Mutation, Missense, h2ax, Saccharomyces cerevisiae, Histones, atm, Serine, Animals, Humans, double-strand breaks, pathway, Cell Cycle, rad53, Electrophoresis, Gel, Pulsed-Field, DNA Topoisomerases, Type I, cell-cycle, topoisomerase-i, Camptothecin, Chromosomes, Fungal, Topoisomerase I Inhibitors, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    201
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
201
Top 10%
Top 1%
Top 1%
gold