Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trafficarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Traffic
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Traffic
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Traffic
Article . 2013
versions View all 2 versions

Trs20 is Required for TRAPP II Assembly

Authors: David, Taussig; Zhanna, Lipatova; Jane J, Kim; Xuiqi, Zhang; Nava, Segev;
Abstract

The modular TRAPP complexes act as nucleotide exchangers to activate the Golgi Ypt/Rab GTPases, Ypt1 and Ypt31/Ypt32. In yeast, TRAPP I acts at the cis‐Golgi and its assembly and structure are well characterized. In contrast, TRAPP II acts at the trans‐Golgi and is poorly understood. Especially puzzling is the role of Trs20, an essential TRAPP I/II subunit required neither for the assembly of TRAPP I nor for its Ypt1‐exchange activity. Mutations in Sedlin, the human functional ortholog of Trs20, cause the cartilage‐specific disorder SEDT. Here we show that Trs20 interacts with the TRAPP II‐specific subunit Trs120. Furthermore, the Trs20‐Trs120 interaction is required for assembly of TRAPP II and for its Ypt32‐exchange activity. Finally, Trs20‐D46Y, with a single‐residue substitution equivalent to a SEDT‐causing mutation in Sedlin, interacts with TRAPP I, but the resulting TRAPP complex cannot interact with Trs120 and TRAPP II cannot be assembled. These results indicate that Trs20 is crucial for assembly of TRAPP II, and the defective assembly caused by a SEDT‐linked mutation suggests that this role is conserved.

Keywords

Models, Molecular, Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Mutation, Missense, Vesicular Transport Proteins, Saccharomyces cerevisiae, Fungal Proteins, Protein Transport, rab GTP-Binding Proteins, Protein Interaction Domains and Motifs, Amino Acid Sequence, Protein Multimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
bronze