Direct Interactions of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 ORF50/Rta Protein with the Cellular Protein Octamer-1 and DNA Are Critical for Specifying Transactivation of a Delayed-Early Promoter and Stimulating Viral Reactivation
Direct Interactions of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 ORF50/Rta Protein with the Cellular Protein Octamer-1 and DNA Are Critical for Specifying Transactivation of a Delayed-Early Promoter and Stimulating Viral Reactivation
ABSTRACT The Kaposi's sarcoma-associated herpesvirus (KSHV) delayed-early K-bZIP promoter contains an ORF50/Rta binding site whose sequence is conserved with the ORF57 promoter. Mutation of the site in the full-length K-bZIP promoter reduced Rta-mediated transactivation by greater than 80%. The K-bZIP element contains an octamer (Oct) binding site that overlaps the Rta site and is well conserved with Oct elements found in the immediate-early promoters of herpes simplex virus type 1(HSV-1). The cellular protein Oct-1, but not Oct-2, binds to the K-bZIP element in a sequence-specific fashion in vitro and in vivo and stimulates Rta binding to the promoter DNA. The coexpression of Oct-1 enhances Rta-mediated transactivation of the wild type but not the mutant K-bZIP promoter, and Oct-1 and Rta proteins bind to each other directly in vitro. Mutations of Rta within an amino acid sequence conserved with HSV-1 virion protein 16 eliminate Rta's interactions with Oct-1 and K-bZIP promoter DNA but not RBP-Jk. The binding of Rta to both Oct-1 and DNA contributes to the transactivation of the K-bZIP promoter and viral reactivation, and Rta mutants deficient for both interactions are completely debilitated. Our data suggest that the Rta/Oct-1 interaction is essential for optimal KSHV reactivation. Transfections of mouse embryo fibroblasts and an endothelial cell line suggest cell-specific differences in the requirement for Oct-1 or RBP-Jk in Rta-mediated transactivation of the K-bZIP promoter. We propose a model in which Rta transactivation of the promoter is specified by the combination of DNA binding and interactions with several cellular DNA binding proteins including Oct-1.
- Rutgers Health United States
- University of Medicine and Dentistry of New Jersey United States
- Rutgers New Jersey Medical School United States
Gene Expression Regulation, Viral, Binding Sites, Base Sequence, Amino Acid Motifs, Molecular Sequence Data, Nuclear Proteins, DNA, Fibroblasts, Cell Line, Immediate-Early Proteins, Mice, Basic-Leucine Zipper Transcription Factors, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Herpesvirus 8, Human, Mutation, Animals, Humans, Amino Acid Sequence, Cells, Cultured, Octamer Transcription Factor-1
Gene Expression Regulation, Viral, Binding Sites, Base Sequence, Amino Acid Motifs, Molecular Sequence Data, Nuclear Proteins, DNA, Fibroblasts, Cell Line, Immediate-Early Proteins, Mice, Basic-Leucine Zipper Transcription Factors, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Herpesvirus 8, Human, Mutation, Animals, Humans, Amino Acid Sequence, Cells, Cultured, Octamer Transcription Factor-1
2 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
