Cathepsin D Is the Main Lysosomal Enzyme Involved in the Degradation of α-Synuclein and Generation of Its Carboxy-Terminally Truncated Species
Cathepsin D Is the Main Lysosomal Enzyme Involved in the Degradation of α-Synuclein and Generation of Its Carboxy-Terminally Truncated Species
Alpha-synuclein is likely to play a key role in the development of Parkinson's disease as well as other synucleinopathies. In animal models, overexpression of full-length or carboxy-terminally truncated alpha-synuclein has been shown to produce pathology. Although the proteosome and lysosome have been proposed to play a role in the degradation of alpha-synuclein, the enzyme(s) involved in alpha-synuclein clearance and generation of its carboxy-terminally truncated species have not been identified. In this study, the role of cathepsin D and calpain I in these processes was analyzed. In vitro experiments, using either recombinant or endogenous alpha-synuclein as substrates and purified cathepsin D or lysosomes, demonstrated that cathepsin D degraded alpha-synuclein very efficiently, and that limited proteolysis resulted in the generation of carboxy-terminally truncated species. Purified calpain I also cleaved alpha-synuclein, but carboxy-terminally truncated species were not the main cleavage products, and calpain I activity present in cellular lysates was not able to degrade the protein. Knockdown of cathepsin D in cells overexpressing wild-type alpha-synuclein increased total alpha-synuclein levels by 28% and lysosomal alpha-synuclein by 2-fold. In in vitro experiments, pepstatin A completely blocked the degradation of alpha-synuclein in purified lysosomes. Furthermore, lysosomes isolated from cathepsin D knockdown cells showed a marked reduction in alpha-synuclein degrading activity, indicating that cathepsin D is the main lysosomal enzyme involved in alpha-synuclein degradation. Our findings suggest that upregulation of cathepsin D could be an additional therapeutic strategy to lessen alpha-synuclein burden in synucleinopathies.
- Mayo Clinic United States
Calpain, Parkinson Disease, Cathepsin D, Disease Models, Animal, Mice, Cell Line, Tumor, alpha-Synuclein, Animals, Humans, Lysosomes, Gene Deletion
Calpain, Parkinson Disease, Cathepsin D, Disease Models, Animal, Mice, Cell Line, Tumor, alpha-Synuclein, Animals, Humans, Lysosomes, Gene Deletion
31 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).275 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
