Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Down-regulation of Epidermal Growth Factor Receptors by Nerve Growth Factor in PC12 Cells Is p140 -, Ras-, and Src-dependent

Authors: P, Lazarovici; M, Oshima; D, Shavit; M, Shibutani; H, Jiang; M, Monshipouri; D, Fink; +2 Authors

Down-regulation of Epidermal Growth Factor Receptors by Nerve Growth Factor in PC12 Cells Is p140 -, Ras-, and Src-dependent

Abstract

Nerve growth factor (NGF) treatment causes a profound down-regulation of epidermal growth factor receptors during the differentiation of PC12 cells. This process is characterized by a progressive decrease in epidermal growth factor (EGF) receptor level measured by 125I-EGF binding, tyrosine phosphorylation, and Western blotting. Treatment of the cells with NGF for 5 days produces a 95% reduction in the amount of [35S]methionine-labeled EGF receptors. This down-regulation does not occur in PC12nnr5 cells, which lack the p140(trk) NGF receptor. However, in PC12nnr5 cells stably transfected with p140(trk), the NGF-induced heterologous down-regulation of EGF receptors is reconstituted in part. NGF-induced heterologous down-regulation, but not EGF-induced homologous down-regulation of EGF receptors, is blocked in Ras- and Src-dominant-negative PC12 cells. Treatment with either pituitary adenylate cyclase-activating peptide (PACAP) or staurosporine stimulates neurite outgrowth in PC12 cell variants, but neither induces down-regulation of EGF receptors. NGF treatment of PC12 cells in suspension induces down-regulation of EGF receptors in the absence of neurite outgrowth. These results strongly suggest a p140(trk)-, Ras- and Src-dependent mechanism of NGF-induced down-regulation of EGF receptors and separate this process from NGF-induced neurite outgrowth in PC12 cells.

Keywords

Neuropeptides, Down-Regulation, Receptor Protein-Tyrosine Kinases, Cell Differentiation, Receptors, Nerve Growth Factor, Staurosporine, PC12 Cells, Rats, ErbB Receptors, src-Family Kinases, Proto-Oncogene Proteins, Neurites, ras Proteins, Animals, Pituitary Adenylate Cyclase-Activating Polypeptide, Nerve Growth Factors, Enzyme Inhibitors, Receptor, trkA, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
gold