Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physiological Report...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physiological Reports
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physiological Reports
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physiological Reports
Article . 2021
Data sources: DOAJ
versions View all 4 versions

Sex and race contribute to variation in mitochondrial function and insulin sensitivity

Authors: Gordon Fisher; Jeannie Tay; Jonathan L. Warren; W. Timothy Garvey; Ceren Yarar‐Fisher; Barbara A. Gower;

Sex and race contribute to variation in mitochondrial function and insulin sensitivity

Abstract

AbstractObjectiveInsulin sensitivity is lower in African American (AA) versus Caucasian American (CA). We tested the hypothesis that lower insulin sensitivity in AA could be explained by mitochondrial respiratory rates, coupling efficiency, myofiber composition, or H2O2 emission. A secondary aim was to determine whether sex affected the results.MethodsAA and CA men and women, 19–45 years, BMI 17–43 kg m2, were assessed for insulin sensitivity (SIClamp) using a euglycemic clamp at 120 mU/m2/min, muscle mitochondrial function using high‐resolution respirometry, H2O2 emission using amplex red, and % myofiber composition.ResultsSIClamp was greater in CA (p < 0.01) and women (p < 0.01). Proportion of type I myofibers was lower in AA (p < 0.01). Mitochondrial respiratory rates, coupling efficiency, and H2O2 production did not differ with race. Mitochondrial function was positively associated with insulin sensitivity in women but not men. Statistical adjustment for mitochondrial function, H2O2 production, or fiber composition did not eliminate the race difference in SIClamp.ConclusionNeither mitochondrial respiratory rates, coupling efficiency, myofiber composition, nor mitochondrial reactive oxygen species production explained lower SIClamp in AA compared to CA. The source of lower insulin sensitivity in AA may be due to other aspects of skeletal muscle that have yet to be identified.

Keywords

reactive oxygen species, Adult, Male, Physiology, Original Articles, Middle Aged, Mitochondria, Muscle, Young Adult, Cross-Sectional Studies, Sex Factors, mitochondrial function, Glucose Clamp Technique, insulin sensitivity, sex, QP1-981, Humans, Hypoglycemic Agents, Insulin, Female, Insulin Resistance, Muscle, Skeletal, Reactive Oxygen Species, race

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold