Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Paracrine rescued lobulogenesis in chimeric outgrowths comprised of progesterone receptor null mammary epithelium and redirected wild-type testicular cells

Authors: John P. Lydon; Gilbert H. Smith; Sonia M. Rosenfield; Corinne A. Boulanger; Robert D. Bruno; Lisa H. Anderson;

Paracrine rescued lobulogenesis in chimeric outgrowths comprised of progesterone receptor null mammary epithelium and redirected wild-type testicular cells

Abstract

We have previously shown that non-mammary and tumorigenic cells can respond to the signals of the mammary niche and alter their cell fate to that of mammary epithelial progenitor cells. Here we tested the hypothesis that paracrine signals from progesterone receptor (PR) expressing mammary epithelial cells are dispensable for redirection of testicular cells, and that re-directed wild-type testicular-derived mammary cells can rescue lobulogenesis of PR-null mammary epithelium via paracrine signaling during pregnancy. We injected PR-null epithelial cells mixed with testicular cells from wild-type adult male mice into cleared fat-pads of recipient mice. The testicular cells were redirected in vivo to mammary epithelial cell fate during regeneration of the mammary epithelium, and persisted in second-generation outgrowths. In the process, the re-directed testicular cells rescued the developmentally deficient PR null cells, signaling them via the paracrine factor RANKL to produce alveolar secretory structures during pregnancy. This is the first demonstration that paracrine signaling required for alveolar development is not required for cellular reprogramming in the mammary gland, and that reprogrammed testicular cells can provide paracrine signals to the surrounding mammary epithelium.

Related Organizations
Keywords

Male, RANK Ligand, Gene Expression, Cell Differentiation, Epithelial Cells, Seminiferous Tubules, Cellular Reprogramming, Injections, Mice, Mammary Glands, Animal, Adipose Tissue, Pregnancy, Paracrine Communication, Animals, Female, Receptors, Progesterone, Progesterone, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
bronze