Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions

Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2‐neo mouse rescued by L‐type calcium channel blockers

Authors: Calorio, Chiara; Gavello, Daniela; Guarina, Laura; Salio, Chiara; Sassoè-Pognetto, Marco; Riganti, Chiara; Bianchi, Federico Tommaso; +9 Authors

Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2‐neo mouse rescued by L‐type calcium channel blockers

Abstract

Key points Tymothy syndrome (TS) is a multisystem disorder featuring cardiac arrhythmias, autism and adrenal gland dysfunction that originates from a de novo point mutation in the gene encoding the Cav1.2 (CACNA1C) L‐type channel. To study the role of Cav1.2 channel signals in autism, the autistic TS2‐neo mouse has been generated bearing the G406R point‐mutation associated with TS type‐2. Using heterozygous TS2‐neo mice, we report that the G406R mutation reduces the rate of inactivation and shifts leftward the activation and inactivation of L‐type channels, causing marked increase of resting Ca2+ influx (‘window’ Ca2+ current). The increased ‘window current’ causes marked reduction of NaV channel density, switches normal tonic firing to abnormal burst firing, reduces mitochondrial metabolism, induces cell swelling and decreases catecholamine release. Overnight incubations with nifedipine rescue NaV channel density, normal firing and the quantity of catecholamine released. We provide evidence that chromaffin cell malfunction derives from altered Cav1.2 channel gating. AbstractL‐type voltage‐gated calcium (Cav1) channels have a key role in long‐term synaptic plasticity, sensory transduction, muscle contraction and hormone release. A point mutation in the gene encoding Cav1.2 (CACNA1C) causes Tymothy syndrome (TS), a multisystem disorder featuring cardiac arrhythmias, autism spectrum disorder (ASD) and adrenal gland dysfunction. In the more severe type‐2 form (TS2), the missense mutation G406R is on exon 8 coding for the IS6‐helix of the Cav1.2 channel. The mutation causes reduced inactivation and induces autism. How this occurs and how Cav1.2 gating‐changes alter cell excitability, neuronal firing and hormone release on a molecular basis is still largely unknown. Here, using the TS2‐neo mouse model of TS we show that the G406R mutation altered excitability and reduced secretory activity in adrenal chromaffin cells (CCs). Specifically, the TS2 mutation reduced the rate of voltage‐dependent inactivation and shifted leftward the activation and steady‐state inactivation of L‐type channels. This markedly increased the resting ‘window’ Ca2+ current that caused an increased percentage of CCs undergoing abnormal action potential (AP) burst firing, cell swelling, reduced mitochondrial metabolism and decreased catecholamine release. The increased ‘window’ Ca2+ current caused also decreased NaV channel density and increased steady‐state inactivation, which contributed to the increased abnormal burst firing. Overnight incubation with the L‐type channel blocker nifedipine rescued the normal AP firing of CCs, the density of functioning NaV channels and their steady‐state inactivation. We provide evidence that CC malfunction derives from the altered Cav1.2 channel gating and that dihydropyridines are potential therapeutics for ASD.

Keywords

CURRENTS, Male, Calcium Channels, L-Type, Nifedipine, Chromaffin Cells, INHIBITION, burst firing; catecholamine secretion; Cav1.2 calcium channels; Nav sodium channels; Physiology, Action Potentials, SPECTRUM DISORDERS, Exocytosis, Sodium Channels, Mice, Catecholamines, GATED SODIUM-CHANNELS, BK CHANNELS, Animals, Point Mutation, Autistic Disorder, Cells, Cultured, CITRON KINASE, K+ CHANNELS, Calcium Channel Blockers, CA2+ CHANNELS, Mitochondria, Mice, Inbred C57BL, Long QT Syndrome, CATECHOLAMINE RELEASE, SECRETION, Calcium, Syndactyly, Ion Channel Gating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
Green
bronze