Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Ionizing Radiation Induces ATM-independent Degradation of p21Cip1 in Transformed Cells

Authors: Scott A, Stuart; Jean Y J, Wang;

Ionizing Radiation Induces ATM-independent Degradation of p21Cip1 in Transformed Cells

Abstract

The cyclin-dependent kinase inhibitor p21(Cip1) plays an important role in the cellular response to DNA damage. In normal cells, genotoxic stress activates the ATM-p53 pathway that up-regulates the expression of p21(Cip1) leading to cell cycle arrest. However, we have found that in several neoplastic cell lines, ionizing radiation (IR) induces ubiquitin-dependent degradation of p21(Cip1). This process is independent of the ATM pathway as it occurs in immortalized A-T fibroblasts. Knockdown of Skp2, an F-box protein capable of regulating the normal turnover of p21(Cip1), does not prevent the IR-induced degradation. Instead, this process requires the Cul4-DDB1(Cdt2) E3 ligase as knockdown of either DDB1 or Cdt2 rescues p21(Cip1) degradation after IR. Mutating the proliferating cell nuclear antigen-binding site of p21(Cip1) also prevents its IR-induced degradation suggesting that the p21(Cip1)-proliferating cell nuclear antigen interaction is critical for this event. Although ectopic expression of a nondegradable p21(Cip1) did not by itself affect the clonogenic survival of HEK293 cells after IR, the degradation of p21(Cip1) and other targets of the Cul4-DDB1(Cdt2) E3 ligase may collectively contribute to the survival of neoplastic cells after ionizing radiation.

Keywords

Cyclin-Dependent Kinase Inhibitor p21, Proteasome Endopeptidase Complex, Ubiquitin, Tumor Suppressor Proteins, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, DNA-Binding Proteins, Proliferating Cell Nuclear Antigen, Radiation, Ionizing, Animals, Humans, Protein Processing, Post-Translational, S-Phase Kinase-Associated Proteins, Cell Line, Transformed, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
gold