Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2337/figsha...
Article . 2020 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://diabetesjournals.figsh...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2337/figsha...
Article . 2020 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://diabetesjournals.figsh...
Article
License: CC BY NC SA
Data sources: UnpayWall
versions View all 2 versions

WDFY2 potentiates hepatic insulin sensitivity and controls endosomal localization of the insulin receptor and IRS1/2

Authors: Wei-Guo Zhu; Xifeng Lu; Hongquan Zhang; Yuan Tian; He Wen; Lina Wang; Fengjie Yuan; +7 Authors

WDFY2 potentiates hepatic insulin sensitivity and controls endosomal localization of the insulin receptor and IRS1/2

Abstract

Endosomes help activate the hepatic insulin-evoked Akt signaling pathway, but the underlying regulatory mechanisms are unclear. Previous studies have suggested that the endosome located protein WD Repeat and FYVE Domain Containing 2 (WDFY2) might be involved in metabolic disorders, such as diabetes. Here, we generated <i>Wdfy2</i> knockout (KO) mice and assessed the metabolic consequences. These KO mice exhibited systemic insulin resistance, with increased gluconeogenesis and suppressed glycogen accumulation in the liver. Mechanistically, we found that the insulin-stimulated activation of Akt2 and its substrates FoxO1 and GSK-3β, is attenuated in the <i>Wdfy2</i> KO liver and H2.35 hepatocytes, suggesting that WDFY2 acts as an important regulator of hepatic Akt2 signaling. We further found that WDFY2 interacts with the insulin receptor (INSR) via its WD1-4 domain and localizes the INSR to endosomes after insulin stimulation. This process ensures that the downstream insulin receptor substrates 1 and 2 (IRS1/2) can be recruited to the endosomal INSR. IRS1/2–INSR binding promotes IRS1/2 phosphorylation and subsequent activation, initiating downstream Akt2 signaling in the liver. Interestingly, adeno-associated viral WDFY2 delivery ameliorated metabolic defects in <i>db/db</i> mice. These findings demonstrate that WDFY2 activates insulin-evoked Akt2 signaling by controlling endosomal localization of the insulin receptor and IRS1/2 in hepatocytes. This pathway might constitute a new potential target for diabetes prevention and/or treatment.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid