Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2004
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila

Authors: Sotillos, Sol; Díaz-Meco, M. Teresa; Caminero, Eva; Moscat, Jorge; Campuzano, Sonsoles;

DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila

Abstract

Both in Drosophila and vertebrate epithelial cells, the establishment of apicobasal polarity requires the apically localized, membrane-associated Par-3–Par-6–aPKC protein complex. In Drosophila, this complex colocalizes with the Crumbs–Stardust (Sdt)–Pals1-associated TJ protein (Patj) complex. Genetic and molecular analyses suggest a functional relationship between them. We show, by overexpression of a kinase-dead Drosophila atypical PKC (DaPKC), the requirement for the kinase activity of DaPKC to maintain the position of apical determinants and to restrict the localization of basolateral ones. We demonstrate a novel physical interaction between the apical complexes, via direct binding of DaPKC to both Crb and Patj, and identify Crumbs as a phosphorylation target of DaPKC. This phosphorylation of Crumbs is functionally significant. Thus, a nonphosphorylatable Crumbs protein behaves in vivo as a dominant negative. Moreover, the phenotypic effect of overexpressing wild-type Crumbs is suppressed by reducing DaPKC activity. These results provide a mechanistic framework for the functional interaction between the Par-3–Par-6–aPKC and Crumbs–Sdt–Patj complexes based in the posttranslational modification of Crb by DaPKC.

Keywords

DNA, Complementary, Molecular Sequence Data, Signal transduction, Epithelial cell polarity, Animals, Drosophila Proteins, Amino Acid Sequence, DaPKC, Phosphorylation, Research Articles, Protein Kinase C, Body Patterning, Gene Library, Genes, Dominant, Glutathione Transferase, Crumbs, Cell Polarity, Gene Expression Regulation, Developmental, Membrane Proteins, Epithelial Cells, Immunohistochemistry, Mutation, Mutagenesis, Site-Directed, Drosophila, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    205
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 57
    download downloads 79
  • 57
    views
    79
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
205
Top 10%
Top 10%
Top 1%
57
79
Green
bronze