Long-chain fatty acids alter transcription of Helicobacter pylori virulence and regulatory genes
Long-chain fatty acids alter transcription of Helicobacter pylori virulence and regulatory genes
Infection with Helicobacter pylori is one of the most important risk factors for developing gastric cancer (GC). The type IV secretion system (T4SS) encoded in the cag pathogenicity island is the main virulence factor of H. pylori associated with GC. Additionally, other virulence factors have been shown to play a role in the H. pylori virulence, such as vacuolizing cytotoxin (VacA), urease, flagella, and adhesins. Long-chain fatty acids (LCFAs) are signaling molecules that affect the transcription of virulence genes in several pathogenic bacteria such as Salmonella enterica, Vibrio cholerae, Pseudomonas aeruginosa and Mycobacterium tuberculosis. However, the effect of LCFAs on the transcription of H. pylori virulence and regulatory genes remains unknown. Here we analyzed whether the transcription of virulence genes that encode T4SS and cellular envelope components, flagellins, adhesins, toxins, urease, as well as the transcription of different regulatory genes of the H. pylori strain 26695, are altered by the presence of five distinct LCFAs: palmitic, stearic, oleic, linoleic, and linolenic acids. Palmitic and oleic acids up-regulated the transcription of most of the virulence genes tested, including cagL, cagM, flaB, sabA, mraY and vacA, as well as that of the genes encoding the transcriptional regulators NikR, Fur, CheY, ArsR, FlgR, HspR, HsrA, Hup, and CrdR. In contrast, the other LCFAs differentially affected the transcription of the virulence and regulatory genes assessed. Our data show that LCFAs can act as signaling molecules that control the transcription of the H. pylori virulome.
Helicobacter pylori, Virulence factors, QH301-705.5, R, Medicine, Biology (General), Transcription, Biochemistry, LCFA
Helicobacter pylori, Virulence factors, QH301-705.5, R, Medicine, Biology (General), Transcription, Biochemistry, LCFA
5 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
