Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aging Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2012
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster

Authors: Fredriksson, Åsa; Johansson Krogh, Elin; Hernebring, Malin; Pettersson, Ellinor; Javadi, Ala; Almstedt, Alvar; Nyström, Thomas;

Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster

Abstract

SummaryIn organisms with a soma–germ demarcation, the germline must be ‘preserved’ such that harmful damage is not transmitted to the offspring. Keeping the progeny free of damage may be achieved by gametes enjoying elevated, and/or more functional, homeostatic maintenance systems. This possibility was approached here by testing whether the soma and maturating oocytes (eggs) dissected from female Drosophila melanogaster in reproductive ages display differential capacities for protein quality control and whether these capacities change during aging and mating. Eggs exhibited a high capacity to prevent protein aggregation, strong capacity for 26S proteasome‐dependent degradation and reduced levels of oxidatively damaged (carbonylated) proteins compared to the soma. The capacity to prevent protein aggregation was not affected in either soma or eggs by age and/or mating, while the 26S proteasome capacity declined in the soma but was maintained in the eggs of aged females. However, the levels of carbonylated proteins increased with age in both soma and eggs, and this increase was more pronounced in females allowed to mate continuously. Furthermore, the levels of carbonylated proteins in the eggs of mated flies correlated negatively with the propensity of the eggs to develop into an adult fly. In young flies, mating caused a decrease in 26S proteasome capacity and an increase in protein carbonylation in the soma, but not in the eggs. These results are in line with trade‐off theories of aging where aging is considered a consequence of investment in reproduction over somatic maintenance.

Related Organizations
Keywords

Male, Aging, Proteasome Endopeptidase Complex, Zygote, Reproduction, Drosophila melanogaster, Oogenesis, Animals, Drosophila Proteins, Female, Ovum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
gold