Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

A Novel Splice Variant of Pmel17 Expressed by Human Melanocytes and Melanoma Cells Lacking Some of the Internal Repeats

Authors: Nichols, Sarah E.; Harper, Dawn C.; Berson, Joanne F.; Marks, Michael S.;

A Novel Splice Variant of Pmel17 Expressed by Human Melanocytes and Melanoma Cells Lacking Some of the Internal Repeats

Abstract

Pmel17 is a approximately 100 kDa pigment cell specific glycoprotein that plays a crucial part in the morphogenesis of melanosome precursors. Anti-Pmel17 immunoprecipitates from metabolically pulse labeled melanoma cells and melanocytes contain, in addition to full-length Pmel17, a glycoprotein that migrates with a lower relative molecular weight. Here we show that this glycoprotein is encoded by an mRNA that results from alternative splicing of the human Pmel17 gene from which a cryptic intron is excised. Immunoprecipitation recapture experiments showed that this glycoprotein contained both the N- and C-termini of full-length Pmel17. Sequence analysis of cDNA corresponding to the alternatively spliced form reveals the loss of three of 10 imperfect direct repeats from the central region of the lumenal domain. The product of the splice variant is processed with similar kinetics to full-length Pmel17, and localizes similarly to late endosomes when expressed ectopically in nonpigment cells. We speculate that truncation of the repeat region within Pmel17 alters either fibrillogenic activity or the interaction of Pmel17 with melanin intermediates. The expression of an alternatively spliced product may furthermore affect the cohort of peptides generated for recognition of melanoma cells by tumor-directed T lymphocytes.

Keywords

Skin Neoplasms, RNA Splicing, T-Lymphocytes, Molecular Sequence Data, melanosome, Dermatology, Biochemistry, Epitopes, Cell Line, Tumor, melanoma, Humans, silver, Amino Acid Sequence, RNA, Messenger, Molecular Biology, Melanoma, Melanins, Melanosomes, Membrane Glycoproteins, Base Sequence, fibril formation, Proteins, Cell Biology, Protein Structure, Tertiary, gp100, Tandem Repeat Sequences, Melanocytes, gp100 Melanoma Antigen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
hybrid