Regulation of gene expression and its role in long-term memory and synaptic plasticity
Regulation of gene expression and its role in long-term memory and synaptic plasticity
Histories of science yet to be written will view the latter half of this century as the Age of Molecular Genetics. From a flash of insight that yielded the double helix (1) to the first genetic clone of a mammal (2), molecular genetics has invaded every aspect of biological research. Initially, this molecular-genetic onslaught was limited to species, such as bacteria, yeast, nematodes, and fruit flies, whose size and life cycle constituted an economy of scale that was advantageous to breeding (3). With the introduction of gene-knockout techniques to mice (4), however, molecular genetics now is storming mammals (5, 6). In the broadest sense, the recent paper by Guzowski and McGaugh (7) represents a vanguard of this invasion. By using antisense oligonucleotides as “pharmaceutical” disruptors of gene expression, they have liberated molecular genetics from breeding. Endogenous regulation of gene expression has been outflanked by exogenous control.
- Cold Spring Harbor Laboratory United States
Neuronal Plasticity, Gene Expression Regulation, Memory, Synapses, Animals, Models, Psychological, Cyclic AMP Response Element-Binding Protein, Models, Biological
Neuronal Plasticity, Gene Expression Regulation, Memory, Synapses, Animals, Models, Psychological, Cyclic AMP Response Element-Binding Protein, Models, Biological
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).80 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
