Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2009 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Multivalent Binding of the ETO Corepressor to E Proteins Facilitates Dual Repression Controls Targeting Chromatin and the Basal Transcription Machinery

Authors: Chun, Guo; Qiande, Hu; Chunxia, Yan; Jinsong, Zhang;

Multivalent Binding of the ETO Corepressor to E Proteins Facilitates Dual Repression Controls Targeting Chromatin and the Basal Transcription Machinery

Abstract

E proteins are a family of helix-loop-helix transcription factors that play important roles in cell differentiation and homeostasis. They contain at least two activation domains, AD1 and AD2. ETO family proteins and the leukemogenic AML1-ETO fusion protein are corepressors of E proteins. It is thought that ETO represses E-protein activity by interacting with AD1, which competes away p300/CBP histone acetyltransferases. Here we report that E proteins contain another conserved ETO-interacting region, termed DES, and that differential associations with AD1 and DES allow ETO to repress transcription through both chromatin-dependent and chromatin-independent mechanisms. At the chromatin level, AD1 and AD2 cooperatively recruit p300. ETO interacts with AD1 to abolish p300 recruitment and to allow HDAC-dependent silencing. At the post-chromatin-remodeling level, binding to DES enables ETO to directly inhibit activation of the basal transcription machinery. This novel repression mechanism is conserved in ETO family proteins and in the AML1-ETO fusion protein. In addition, the repression capacity exerted by each mechanism is differentially modulated by cross talk among various ETO domains and the AML1 domain of AML1-ETO. In particular, the oligomerization domain of ETO plays a major role in targeting ETO to the DES region and independently potentiates the TAFH domain-mediated AD1 interaction. The ability to exert repression at different levels not only may allow these corepressors to impose robust inhibition of signal-independent transcription but may also allow a rapid response to signals. In addition, our newly defined domain interactions and their interplays have important implications in effectively targeting both E-protein fusion proteins and AML1-ETO found in cancers.

Keywords

Models, Molecular, Transcription, Genetic, Recombinant Fusion Proteins, Chromatin, Cell Line, Repressor Proteins, RUNX1 Translocation Partner 1 Protein, Gene Expression Regulation, Proto-Oncogene Proteins, Core Binding Factor Alpha 2 Subunit, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
bronze
Related to Research communities
Cancer Research