Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biblioteca Digital F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cancer
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Heregulin inhibits proliferation via ERKs and phosphatidyl‐inositol 3‐kinase activation but regulates urokinase plasminogen activator independently of these pathways in metastatic mammary tumor cells

Authors: Lydia, Puricelli; Cecilia J, Proietti; Cecilia J, Proiettii; Leticia, Labriola; Mariana, Salatino; María E, Balañá; Julio, Aguirre Ghiso; +5 Authors

Heregulin inhibits proliferation via ERKs and phosphatidyl‐inositol 3‐kinase activation but regulates urokinase plasminogen activator independently of these pathways in metastatic mammary tumor cells

Abstract

AbstractHeregulin (HRG) and type I receptor tyrosine kinase (RTK) expression was investigated in the highly invasive and metastatic LM3 cell line, our previously described model of metastasis for mammary cancer (Bal de Kier Joffe et al. [1986] Invasion Metastasis 6:302–12; Urtreger et al. [1997] Int J Oncol 11:489–96). Although LM3 cells do not express HRG, they exhibit high levels of ErbB‐2 and ErbB‐3 as well as moderate expression of ErbB‐4. Addition of exogenous HRGβ1 resulted in inhibition of both proliferation and migration of LM3 cells. HRGβ1 was also able to decrease the activity of urokinase‐type plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP‐9), 2 key enzymes in the invasion and metastatic cascade. HRGβ1 treatment of LM3 cells induced tyrosine phosphorylation of ErbB‐2, ErbB‐3 and ErbB‐4 as well as the formation of ErbB‐2/ErbB‐3 and ErbB‐2/ErbB‐4 heterodimers. Assessment of the signaling pathways involved in HRGβ1 action indicated that the addition of HRGβ1 to LM3 cells resulted in activation of phosphatidylinositol 3‐ kinase (PI‐3K) and in strong induction of the association of the p85 subunit of PI‐3K with ErbB‐3. HRGβ1 also caused the rapid activation of ERK1/ERK2 and Stat3 and Stat5 (signal transducers and activators of transcription [STAT]). This is the first demonstration of the ability of HRGβ1 to activate STATs in mammary tumor cells. Blockage of PI‐3K activity with its chemical inhibitor wortmannin, or of MEK1/ERKs activity with PD98059, resulted in suppression of the ability of HRGβ1 to inhibit LM3 cell growth. Notwithstanding the suppression of these 2 signaling pathways, HRGβ1 still proved capable of inhibiting uPA activity. Therefore, our results provide evidence that signaling pathways involved in HRGβ1‐induced proliferation appear to be distinct from those involved in HRGβ1 regulation of uPA, a protease that plays a pivotal role in invasion and metastasis. © 2002 Wiley‐Liss, Inc.

Keywords

Time Factors, cell migration, urokinase, animal cell, Mice, Phosphatidylinositol 3-Kinases, Cell Movement, Tumor Cells, Cultured, 1-Phosphatidylinositol 3-Kinase, phosphatidylinositol 3 kinase, Phosphorylation, Enzyme Inhibitors, Neoplasm Metastasis, Heregulin, recombinant heregulin beta1, Blotting, messenger RNA, neu differentiation factor, breast tumor, article, 2 (2 amino 3 methoxyphenyl)chromone, unclassified drug, ErbB Receptors, wortmannin, female, Phenotype, priority journal, Matrix Metalloproteinase 9, Urinary Plasminogen Activator, Drug, Mitogen-Activated Protein Kinases, Western, Dimerization, signal transduction, Cell Division, Signal Transduction, Receptor, erbB-2, Neuregulin-1, Receptor, erbB-3, Blotting, Western, Mammary Neoplasms, Animal, STAT protein, ERKs, Dose-Response Relationship, gelatinase B, Ribonucleases, metastasis, Animals, Humans, controlled study, mouse, Flavonoids, nonhuman, Dose-Response Relationship, Drug, Animal, Mammary Neoplasms, ErbB receptors, Metastatic mammary tumors, enzyme activation, tumor cell culture, Precipitin Tests, Enzyme Activation, cell proliferation, epidermal growth factor receptor kinase, Gene Expression Regulation, monoclonal antibody, Receptor, Epidermal Growth Factor, Phosphatidylinositol 3-kinase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Green
bronze