Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Roles of receptor activity‐modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice

Authors: Kanako Hosono; Hiromi Matsuda; Hirotsugu Okamoto; Chie Kurashige; Kazutake Tsujikawa; Masataka Majima;

Roles of receptor activity‐modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice

Abstract

Receptor activity-modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). CGRP, a 37-aa neuropeptide, is widely distributed in neuronal tissues and exerts its biological effects via CLR/RAMP1; however, the pathophysiological roles of CLR/RAMP1 remain to be clarified. To study the functions of CLR/RAMP1, we generated RAMP1-knockout (RAMP1(-/-)) mice. Compared with those of wild-type (WT) mice, wound healing and wound-induced angiogenesis were significantly suppressed in RAMP1(-/-) mice, with reduced expression of vascular endothelial growth factor (VEGF)-A. Formation of the lymphatic vessels that drain interstitial fluids was also suppressed in RAMP1(-/-) mice, with reduced expression of VEGF-C and VEGFR-3 in wound granulation tissues. RAMP1 was expressed in endothelial cells (ECs) in the preexisting skin blood vessels, but was not observed in ECs in newly formed blood or lymphatic vessels. Macrophages in the wound granulation tissues expressed RAMP1 and produced substantial amounts of VEGF-C in response to CGRP in vitro. RAMP1(-/-) bone marrow chimeric mice showed delayed wound healing with reduced angiogenesis/lymphangiogenesis in wound granulation tissues. These findings suggest that RAMP1 plays a crucial role in wound healing and wound-induced angiogenesis and lymphangiogenesis and that it is a promising target for controlling angiogenesis and lymphangiogenesis.

Related Organizations
Keywords

Mice, Wound Healing, Base Sequence, Animals, Neovascularization, Physiologic, Lymphangiogenesis, Real-Time Polymerase Chain Reaction, DNA Primers, Receptor Activity-Modifying Protein 1, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%