IL-33–Induced Hematopoietic Stem and Progenitor Cell Mobilization Depends upon CCR2
pmid: 25143444
IL-33–Induced Hematopoietic Stem and Progenitor Cell Mobilization Depends upon CCR2
Abstract IL-33 has been implicated in the pathogenesis of asthma, atopic allergy, anaphylaxis, and other inflammatory diseases by promoting the production of proinflammatory cytokines and chemokines or Th2 immune responses. In this study, we analyzed the in vivo effect of IL-33 administration. IL-33 markedly promoted myelopoiesis in the bone marrow and myeloid cell emigration. Concomitantly, IL-33 induced hematopoietic stem and progenitor cell (HSPC) mobilization and extramedullary hematopoiesis. HSPC mobilization was mediated mainly through increased levels of CCL7 produced by vascular endothelial cells in response to IL-33. In vivo treatment of IL-33 rapidly induced phosphorylation of ERK, JNK, and p38, and inhibition of these signaling molecules completely blocked the production of CCL7 induced by IL-33. Consistently, inhibitor of CCR2 markedly reduced IL-33–mediated HSPC mobilization in vivo and migration of HSPCs in response to CCL7 in vitro. IL-33–mobilized HSPCs were capable of homing to, and of long-term reconstitution in, the bone marrow of irradiated recipients. Immune cells derived from these recipients had normal antifungal activity. The ability of IL-33 to promote migration of HSPCs and myeloid cells into the periphery and to regulate their antifungal activity represents a previously unrecognized role of IL-33 in innate immunity. These properties of IL-33 have clinical implications in hematopoietic stem cell transplantation.
- University of Ulsan Korea (Republic of)
- Ulsan University Hospital Korea (Republic of)
- Centre of Biomedical Research India
Mice, Knockout, Myelopoiesis, Mice, Inbred BALB C, MAP Kinase Signaling System, Receptors, CCR2, Interleukins, Hematopoietic Stem Cells, Interleukin-33, Hematopoietic Stem Cell Mobilization, Immunity, Innate, Mice, Animals, Female, Myeloid Cells, Chemokine CCL7, Autografts, Extracellular Signal-Regulated MAP Kinases, Bone Marrow Transplantation
Mice, Knockout, Myelopoiesis, Mice, Inbred BALB C, MAP Kinase Signaling System, Receptors, CCR2, Interleukins, Hematopoietic Stem Cells, Interleukin-33, Hematopoietic Stem Cell Mobilization, Immunity, Innate, Mice, Animals, Female, Myeloid Cells, Chemokine CCL7, Autografts, Extracellular Signal-Regulated MAP Kinases, Bone Marrow Transplantation
13 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2018IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2022IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
