Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Veterinar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Veterinary Internal Medicine
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Veterinary Internal Medicine
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 2015
Data sources: Open Access LMU
versions View all 4 versions

Nanoparticulate CpG Immunotherapy in RAO‐Affected Horses: Phase I and IIa Study

Authors: Klier, Johny; Lehmann, B.; Fuchs, S.; Reese, Sven; Hirschmann, A.; Coester, C.; Winter, G.; +1 Authors

Nanoparticulate CpG Immunotherapy in RAO‐Affected Horses: Phase I and IIa Study

Abstract

BackgroundRecurrent airway obstruction (RAO), an asthma‐like disease, is 1 of the most common allergic diseases in horses in the northern hemisphere. Hypersensitivity reactions to environmental antigens cause an allergic inflammatory response in the equine airways. Cytosine‐phosphate‐guanosine‐oligodeoxynucleotides (CpG‐ODN) are known to direct the immune system toward a Th1‐pathway, and away from the pro‐allergic Th2‐line (Th2/Th1‐shift). Gelatin nanoparticles (GNPs) are biocompatible and biodegradable immunological inert drug delivery systems that protect CpG‐ODN against nuclease degeneration. Preliminary studies on the inhalation of GNP‐bound CpG‐ODN in RAO‐affected horses have shown promising results.ObjectivesThe aim of this study was to evaluate the clinical and immunological effects of GNP‐bound CpG‐ODN in a double‐blinded, placebo‐controlled, prospective, randomized clinical trial and to verify a sustained effect post‐treatment.Animals and MethodsTwenty‐four RAO‐affected horses received 1 inhalation every 2 days for 5 consecutive administrations. Horses were examined for clinical, endoscopic, cytological, and blood biochemical variables before the inhalation regimen (I), immediately afterwards (II), and 4 weeks post‐treatment (III).ResultsAt time points I and II, administration of treatment rather than placebo corresponded to a statistically significant decrease in respiratory effort, nasal discharge, tracheal secretion, and viscosity, AaDO2 and neutrophil percentage, and an increase in arterial oxygen pressure.Conclusion and Clinical ImportanceAdministration of a GNP‐bound CpG‐ODN formulation caused a potent and persistent effect on allergic and inflammatory‐induced clinical variables in RAO‐affected horses. This treatment, therefore, provides an innovative, promising, and well‐tolerated strategy beyond conventional symptomatic long‐term therapy and could serve as a model for asthma treatment in humans.

Keywords

Male, Partial Pressure, Respiration, Standard Articles, Oxygen, Mucus, Oligodeoxyribonucleotides, Auscultation, Animals, Nanoparticles, Female, Horse Diseases, Horses, Lung Diseases, Obstructive, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
gold