Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2002
versions View all 3 versions

The Yeast Capping Enzyme Represses RNA Polymerase II Transcription

Authors: Myers, Lawrence C.; Lacomis, Lynne; Erdjument-Bromage, Hediye; Tempst, Paul;

The Yeast Capping Enzyme Represses RNA Polymerase II Transcription

Abstract

Using a highly pure transcription system derived from Saccharomyces cerevisiae, we have purified an activity in yeast whole-cell extracts that represses RNA polymerase II transcription. Mechanistic studies suggest that this repressor specifically targets transcriptional reinitiation. The two polypeptides that constitute the repressor have been identified as Ceg1p and Cet1p, the two subunits of the yeast pre-mRNA capping enzyme. A purified recombinant capping enzyme is able to reconstitute repressor activity. Cet1p is necessary for and capable of this repression. Transcriptional run-on experiments indicate that the capping enzyme also serves as a repressor in vivo. Efficient pre-mRNA capping relies on interactions between the capping enzyme and transcription apparatus. Repression by the capping enzyme suggests a bidirectional flow of information between capping and transcription.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Models, Genetic, Transcription, Genetic, mRNA Guanylyltransferases, Cell Biology, Saccharomyces cerevisiae, Chromatography, Ion Exchange, Nucleotidyltransferases, Mass Spectrometry, Recombinant Proteins, Acid Anhydride Hydrolases, Repressor Proteins, Gene Expression Regulation, Fungal, RNA Polymerase II, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
hybrid