Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross
Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross
Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.
- University of Washington United States
- North Carolina Agricultural and Technical State University United States
- Jackson Laboratory United States
- North Carolina State University United States
- Erasmus University Rotterdam Netherlands
QH301-705.5, Immunology, 610, Mice, Inbred Strains, Virus Replication, Microbiology, 630, EMC MM-04-27-01, Rodent Diseases, Mice, SDG 3 - Good Health and Well-being, Orthomyxoviridae Infections, Species Specificity, Virology, Influenza, Human, Medicine and Health Sciences, Genetics, Animals, Humans, Biology (General), Lung, Molecular Biology, Crosses, Genetic, Recombination, Genetic, Models, Genetic, Life Sciences, Genetic Variation, RC581-607, Phenotype, Influenza A virus, Host-Pathogen Interactions, Female, Parasitology, Immunologic diseases. Allergy, Reassortant Viruses, Research Article
QH301-705.5, Immunology, 610, Mice, Inbred Strains, Virus Replication, Microbiology, 630, EMC MM-04-27-01, Rodent Diseases, Mice, SDG 3 - Good Health and Well-being, Orthomyxoviridae Infections, Species Specificity, Virology, Influenza, Human, Medicine and Health Sciences, Genetics, Animals, Humans, Biology (General), Lung, Molecular Biology, Crosses, Genetic, Recombination, Genetic, Models, Genetic, Life Sciences, Genetic Variation, RC581-607, Phenotype, Influenza A virus, Host-Pathogen Interactions, Female, Parasitology, Immunologic diseases. Allergy, Reassortant Viruses, Research Article
35 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).182 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
