Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Activation of PRMT1 and PRMT5 mediates hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and the lung of miniature pigs: The role of p38 and JNK mitogen-activated protein kinases

Authors: Seul Ki, Lim; Yong Wun, Jeong; Dong Il, Kim; Min Jung, Park; Joo Hee, Choi; Se Un, Kim; Seong Soo, Kang; +2 Authors

Activation of PRMT1 and PRMT5 mediates hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and the lung of miniature pigs: The role of p38 and JNK mitogen-activated protein kinases

Abstract

Severe hypoxic and ischemic injury leads to primary graft dysfunction after lung transplantation. Arginine methylation, which is responsible for the regulation of a variety of biological functions, is mediated by protein arginine methylation transferases (PRMTs). This study examined the role of hypoxia in PRMT activation in A549 human lung epithelial cells, as well as the role of ischemia in PRMT activation in the lung of miniature pigs. In A459 cells, hypoxia increased the expression of PRMT1 and PRMT5, and overexpression of PRMT1 and PRMT5 induced apoptosis. The transfection of PRMT1 and PRMT5 small interfering RNA (siRNA) prevented hypoxia-inducible factor (HIF)-1α expression and apoptosis in A549 cells. Hypoxia-induced expression of PRMT1 and PRMT5 was blocked by p38 and JNK mitogen-activated protein kinase (MAPK) inhibitors, but not by an inhibitor of extracellular signal-regulated kinases (ERK) 1/2. In the lungs of miniature pigs, ischemia stimulated PRMT1 and PRMT5 expression and induced phosphorylation of p38 MAPK (p-p38), phosphorylation of JNK (p-JNK), and apoptotic molecules. These results demonstrate that PRMT1 and PRMT5 are involved in hypoxia and ischemia-induced apoptosis via p-p38 MAPK and p-JNK in in vitro and in vivo models.

Related Organizations
Keywords

Protein-Arginine N-Methyltransferases, Swine, JNK Mitogen-Activated Protein Kinases, Apoptosis, Epithelial Cells, Respiratory Mucosa, Hypoxia-Inducible Factor 1, alpha Subunit, p38 Mitogen-Activated Protein Kinases, Repressor Proteins, Ischemia, Animals, Humans, Swine, Miniature, RNA Interference, Hypoxia, Lung, Lung Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%