Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Cancer Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Suppression of proHB-EGF Carboxy-Terminal Fragment Nuclear Translocation: A New Molecular Target Therapy for Gastric Cancer

Authors: Takaya, Shimura; Hiromi, Kataoka; Naotaka, Ogasawara; Eiji, Kubota; Makoto, Sasaki; Satoshi, Tanida; Takashi, Joh;

Suppression of proHB-EGF Carboxy-Terminal Fragment Nuclear Translocation: A New Molecular Target Therapy for Gastric Cancer

Abstract

Abstract Purpose: Inactivation of epidermal growth factor (EGF) receptor (EGFR) represents a promising strategy for the development of selective therapies against epithelial cancers and has been extensively studied as a molecular target for cancer therapy. However, little attention has been paid to remnant cell-associated domains created by cleavage of EGFR ligands. The present study focused on recent findings that cleavage of membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF), an EGFR ligand, induces translocation of the carboxyl-terminal fragment (CTF) of HB-EGF from the plasma membrane to the nucleus and regulates cell cycle. Experimental Design: Two gastric cancer cell lines, MKN28 and NUGC4, were used. KB-R7785, an inhibitor of proHB-EGF shedding, was used to suppress HB-EGF-CTF nuclear translocation with cetuximab, which inhibits EGFR phosphorylation. Cell growth was analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay, apoptosis was evaluated by assay of caspase-3 and caspase-7, and cell cycle was investigated by flow cytometry. Results: Immunofluorescence study confirmed that KB-R7785 inhibited HB-EGF-CTF nuclear translocation under conditions of proHB-EGF shedding induction by 12-O-tetradecanoylphorbol-13-acetate in gastric cancer cells. KB-R7785 inhibited cell growth in a dose-dependent manner and high-dose KB-R7785 induced apoptosis. Moreover, KB-R7785 induced cell cycle arrest and increased sub-G1 DNA content. KB-R7785 suppressed cyclin A and c-Myc expression. All effects of KB-R7785 were reinforced by combination with cetuximab. Conclusions: These results suggest that both inhibition of EGFR phosphorylation and inhibition of HB-EGF-CTF nuclear translocation play crucial roles in inhibitory regulation of cancer cell growth. Suppression of HB-EGF-CTF nuclear translocation might offer a new strategy for treating gastric cancer.

Related Organizations
Keywords

Cell Nucleus, Drug Evaluation, Preclinical, Glycine, Kruppel-Like Transcription Factors, ADAM12 Protein, Antibodies, Monoclonal, Cetuximab, Membrane Proteins, Antibodies, Monoclonal, Humanized, Hydroxamic Acids, Models, Biological, Peptide Fragments, ErbB Receptors, ADAM Proteins, Drug Delivery Systems, Cell Line, Tumor, Antineoplastic Combined Chemotherapy Protocols, Humans, Intercellular Signaling Peptides and Proteins, Heparin-binding EGF-like Growth Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
bronze