Regulation of arginine metabolism in Saccharomyces cerevisiae. Association of arginase and ornithine transcarbamoylase.
pmid: 3528164
Regulation of arginine metabolism in Saccharomyces cerevisiae. Association of arginase and ornithine transcarbamoylase.
Association of arginase and ornithine transcarbamoylase (OTCase) has been proposed to play an essential role in the regulation of arginine metabolism in Saccharomyces cerevisiae (Wiame, J.-M. (1971) Curr. Top. Cell. Reg. 4, 1-39). In this report multienzyme complex formation is directly demonstrated in the presence of the active-site ligands for OTCase and arginase. Using equilibrium sedimentation, a dissociation constant for complex formation was determined to be 2.3 X 10(-8) M in the presence of ornithine and agmatine, active-site ligands for OTCase and arginase, respectively. A molecular stoichiometry in the complex of one molecule of OTCase to one molecule of arginase was verified using transmission electron microscopy. The dimensions of the complex were determined by negative staining and rotary and unidirectional shadowing techniques to be 102 A wide by 81 A high. These dimensions are quantitively consistent with dimensions of the individual enzymes (Duong, L. T., Eisenstein, E., Green, S. M., Ornberg, R. L., and Hensley, P. (1986) J. Biol. Chem. 261, 12807-12813). The enzymatic activity of OTCase is virtually completely inhibited when associated with arginase, reflecting the dramatic modulation of enzyme activity as a consequence of the acquisition of quaternary structure in this multienzyme complex.
- National Institutes of Health United States
- University of California, Berkeley United States
- Georgetown University Medical Center United States
Molecular Weight, Microscopy, Electron, Arginase, Multienzyme Complexes, Saccharomyces cerevisiae, Arginine, Mathematics, Ornithine Carbamoyltransferase
Molecular Weight, Microscopy, Electron, Arginase, Multienzyme Complexes, Saccharomyces cerevisiae, Arginine, Mathematics, Ornithine Carbamoyltransferase
1 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
