Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cardiology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

FHL2 switches MITF from activator to repressor of Erbin expression during cardiac hypertrophy

Authors: Inbal, Rachmin; Eden, Amsalem; Eliahu, Golomb; Ronen, Beeri; Dan, Gilon; Pengfei, Fang; Hovav, Nechushtan; +7 Authors

FHL2 switches MITF from activator to repressor of Erbin expression during cardiac hypertrophy

Abstract

Congestive heart failure (CHF) is a significant health care burden in developed countries. However, the molecular events leading from cardiac hypertrophy to CHF are unclear and preventive therapeutic approaches are limited. We have previously described that microphthalmia-associated transcription factor (MITF) is a key regulator of cardiac hypertrophy, but its cardiac targets are still uncharacterized.Gene array analysis of hearts from MITF-mutated mice indicated that ErbB2 interacting protein (Erbin) is a candidate target gene for MITF. We have recently demonstrated that Erbin is decreased in human heart failure and plays a role as a negative modulator of pathological cardiac hypertrophy. Here we show that Erbin expression is regulated by MITF. Under basal conditions MITF activates Erbin expression by direct binding to its promoter. However, under β-adrenergic stimulation Erbin expression is decreased only in wild type mice, but not in MITF-mutated mice. Yeast two-hybrid screening, using MITF as bait, identified an interaction with the cardiac-predominant four-and-a-half LIM domain protein 2 (FHL2), which was confirmed by co-immunoprecipitation in both mouse and human hearts. Upon β-adrenergic stimulation, FHL2 and MITF bind Erbin promoter as a complex and repress MITF-directed Erbin expression. Overexpression of FHL2 alone had no effect on Erbin expression, but in the presence of MITF, Erbin expression was decreased. FHL2-MITF association was also increased in biopsies of heart failure patients.MITF unexpectedly regulates both the activation and the repression of Erbin expression. This ligand mediated fine tuning of its gene expression could be an important mechanism in the process of cardiac hypertrophy and heart failure.

Keywords

Heart Failure, Male, Transcriptional Activation, Microphthalmia-Associated Transcription Factor, Biopsy, Gene Expression Profiling, Heart Ventricles, LIM-Homeodomain Proteins, Intracellular Signaling Peptides and Proteins, Muscle Proteins, Cardiomegaly, Real-Time Polymerase Chain Reaction, Rats, Rats, Sprague-Dawley, Mice, Gene Expression Regulation, Animals, Humans, Carrier Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
bronze