Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Gen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annual Review of Genetics
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Epithelial Cell Polarity and Cell Junctions inDrosophila

Authors: Tepass, Ulrich; Tanentzapf­, Guy; Ward, Robert E., IV; Fehon, Richard G.;

Epithelial Cell Polarity and Cell Junctions inDrosophila

Abstract

▪ Abstract The polarized architecture of epithelial cells and tissues is a fundamental determinant of animal anatomy and physiology. Recent progress made in the genetic and molecular analysis of epithelial polarity and cellular junctions in Drosophila has led to the most detailed understanding of these processes in a whole animal model system to date. Asymmetry of the plasma membrane and the differentiation of membrane domains and cellular junctions are controlled by protein complexes that assemble around transmembrane proteins such as DE-cadherin, Crumbs, and Neurexin IV, or other cytoplasmic protein complexes that associate with the plasma membrane. Much remains to be learned of how these complexes assemble, establish their polarized distribution, and contribute to the asymmetric organization of epithelial cells.

Related Organizations
Keywords

Cellular junctions, 570, Polarity, membrane domain, Cellularization, Cell Polarity, Epithelial Cells, Epithelium, Drosophila melanogaster, Intercellular Junctions, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    485
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
485
Top 1%
Top 1%
Top 1%
Green
bronze