Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The ENaC Channel is Required for Normal Epidermal Differentiation

Authors: Mauro, T.; Behne, M.; Oda, Y.; Crumrine, D.; Komuves, L.; Rassner, U.; Elias, P.M.; +2 Authors

The ENaC Channel is Required for Normal Epidermal Differentiation

Abstract

Ionic fluxes are important for critical aspects of keratinocyte differentiation, including synthesis of differentiation-specific proteins, enzymatic catalysis of protein cross-linking, post-transcriptional processing of profilaggrin, and lipid secretion. The epithelial sodium channel is expressed in epidermis and the expression of its alpha and beta subunits is enhanced as keratinocytes differentiate. In order to ascertain the role of the epithelial sodium channel in epidermal differentiation, we examined skin of mice in which the epithelial sodium channel alpha subunit had been deleted. Newborn -/- mice, in which the alpha subunit had been completely inactivated, demonstrated epithelial hyperplasia, abnormal nuclei, premature secretion of lipids, and abnormal keratohyaline granules. In addition, immunohistochemistry demonstrated that expression of the differentiation markers K1, K6, and involucrin were abnormal. These data suggest that the epithelial sodium channel modulates ionic signaling for specific aspects of epidermal differentiation, such as synthesis or processing of differentiation- specific proteins, and lipid secretion.

Keywords

Keratinocytes, skin, Biopsy, Gene Expression, Dermatology, Biochemistry, Sodium Channels, gene targeting, Scnnla sodium transport, Mice, Animals, Protein Precursors, Epithelial Sodium Channels, Molecular Biology, Mice, Knockout, Hyperplasia, Sodium, Cell Differentiation, Cell Biology, Lipid Metabolism, Microscopy, Electron, Epidermal Cells, epithelial sodium channel, Keratins, Epidermis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
hybrid