Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2001 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Comparison of Predicted Amino Acid Sequences of Measles Virus Strains in the Edmonston Vaccine Lineage

Authors: Robert A. Lerch; Mohinder S. Sidhu; Hai-Ping Wang; Pramila Walpita; Christopher L. Parks; Stephen A. Udem;

Comparison of Predicted Amino Acid Sequences of Measles Virus Strains in the Edmonston Vaccine Lineage

Abstract

ABSTRACT Protein-encoding nucleotide sequences of the N, P, M, F, H, and L genes were determined for a low-passage isolate of the Edmonston wild-type (wt) measles virus and five Edmonston-derived vaccine virus strains, including AIK-C, Moraten, Schwarz, Rubeovax, and Zagreb. Comparative analysis demonstrated a high degree of nucleotide sequence homology; vaccine viruses differed at most by 0.3% from the Edmonston wt strain. Deduced amino acid sequences predicted substitutions in all viral polypetides. Eight amino acid coding changes were common to all vaccine viruses; an additional two were conserved in all vaccine strains except Zagreb. Comparisons made between vaccine strains indicated that commercial vaccine lots of Moraten and Schwarz had identical coding regions and were closely related to Rubeovax, while AIK-C and Zagreb diverged from the Edmonston wt along slightly different paths. These comparisons also revealed amino acid coding substitutions in Moraten and Schwarz that were absent from the closely related reactogenic Rubeovax strain. All of the vaccine viruses contained amino acid coding changes in the core components of the virus-encoded transcription and replication apparatus. This observation, combined with identification of noncoding region nucleotide changes in potential cis -acting sequences of the vaccine strains (C. L. Parks, R. A. Lerch, P. Walpita, H.-P. Wang, M. S. Sidhu, and S. A. Udem, J. Virol. 75:921–933, 2001), suggest that modulation of transcription and replication plays an important role in attenuation.

Keywords

Genes, Viral, Reverse Transcriptase Polymerase Chain Reaction, Measles Vaccine, Molecular Sequence Data, Genome, Viral, Sequence Analysis, DNA, Vaccines, Attenuated, Viral Proteins, Amino Acid Substitution, Measles virus, Mutation, Animals, Humans, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 10%
bronze