<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Comparison of Predicted Amino Acid Sequences of Measles Virus Strains in the Edmonston Vaccine Lineage
 Copyright policy )
 Copyright policy )Comparison of Predicted Amino Acid Sequences of Measles Virus Strains in the Edmonston Vaccine Lineage
ABSTRACT Protein-encoding nucleotide sequences of the N, P, M, F, H, and L genes were determined for a low-passage isolate of the Edmonston wild-type (wt) measles virus and five Edmonston-derived vaccine virus strains, including AIK-C, Moraten, Schwarz, Rubeovax, and Zagreb. Comparative analysis demonstrated a high degree of nucleotide sequence homology; vaccine viruses differed at most by 0.3% from the Edmonston wt strain. Deduced amino acid sequences predicted substitutions in all viral polypetides. Eight amino acid coding changes were common to all vaccine viruses; an additional two were conserved in all vaccine strains except Zagreb. Comparisons made between vaccine strains indicated that commercial vaccine lots of Moraten and Schwarz had identical coding regions and were closely related to Rubeovax, while AIK-C and Zagreb diverged from the Edmonston wt along slightly different paths. These comparisons also revealed amino acid coding substitutions in Moraten and Schwarz that were absent from the closely related reactogenic Rubeovax strain. All of the vaccine viruses contained amino acid coding changes in the core components of the virus-encoded transcription and replication apparatus. This observation, combined with identification of noncoding region nucleotide changes in potential cis -acting sequences of the vaccine strains (C. L. Parks, R. A. Lerch, P. Walpita, H.-P. Wang, M. S. Sidhu, and S. A. Udem, J. Virol. 75:921–933, 2001), suggest that modulation of transcription and replication plays an important role in attenuation.
Genes, Viral, Reverse Transcriptase Polymerase Chain Reaction, Measles Vaccine, Molecular Sequence Data, Genome, Viral, Sequence Analysis, DNA, Vaccines, Attenuated, Viral Proteins, Amino Acid Substitution, Measles virus, Mutation, Animals, Humans, Amino Acid Sequence
Genes, Viral, Reverse Transcriptase Polymerase Chain Reaction, Measles Vaccine, Molecular Sequence Data, Genome, Viral, Sequence Analysis, DNA, Vaccines, Attenuated, Viral Proteins, Amino Acid Substitution, Measles virus, Mutation, Animals, Humans, Amino Acid Sequence
60 Research products, page 1 of 6
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- chevron_left 
- 1
- 2
- 3
- 4
- 5
- chevron_right 
- citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).- 125 - popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.- Top 10% - influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).- Top 10% - impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.- Top 10% 
