Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Cancer Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2007
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Cancer Research
Article . 2007 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 2007
Data sources: CNR ExploRA
versions View all 7 versions

Sorafenib Inhibits Imatinib-Resistant KIT and Platelet-Derived Growth Factor Receptor β Gatekeeper Mutants

Authors: GUIDA, TERESA; ANAGANTI S; PROVITERA L; GEDRICH R; SULLIVAN E; WILHELM SM; SANTORO, MASSIMO; +1 Authors

Sorafenib Inhibits Imatinib-Resistant KIT and Platelet-Derived Growth Factor Receptor β Gatekeeper Mutants

Abstract

Abstract Purpose: Targeting of KIT and platelet-derived growth factor receptor (PDGFR) tyrosine kinases by imatinib is an effective anticancer strategy. However, mutations of the gatekeeper residue (T670 in KIT and T681 in PDGFRβ) render the two kinases resistant to imatinib. The aim of this study was to evaluate whether sorafenib (BAY 43-9006), a multitargeted ATP-competitive inhibitor of KIT and PDGFR, was active against imatinib-resistant KIT and PDGFRβ kinases. Experimental Design: We used in vitro kinase assays and immunoblot with phosphospecific antibodies to determine the activity of sorafenib on KIT and PDGFRβ kinases. We also exploited reporter luciferase assays to measure the effects of sorafenib on KIT and PDGFRβ downstream signaling events. The activity of sorafenib on interleukin-3–independent proliferation of Ba/F3 cells expressing oncogenic KIT or its imatinib-resistant T670I mutant was also tested. Results: Sorafenib efficiently inhibited gatekeeper mutants of KIT and PDGFRβ (IC50 for KIT T670I, 60 nmol/L; IC50 for PDGFRβ T681I, 110 nmol/L). Instead, it was less active against activation loop mutants of the two receptors (IC50 for KIT D816V, 3.8 μmol/L; IC50 for PDGFRβ D850V, 1.17 μmol/L) that are also imatinib-resistant. Sorafenib blocked receptor autophosphorylation and signaling of KIT and PDGFRβ gatekeeper mutants in intact cells as well as activation of AP1-responsive and cyclin D1 gene promoters, respectively. Finally, the compound inhibited KIT-dependent proliferation of Ba/F3 cells expressing the oncogenic KIT mutant carrying the T670I mutation. Conclusions: Sorafenib might be a promising anticancer agent for patients carrying KIT and PDGFRβ gatekeeper mutations.

Keywords

Niacinamide, Cancer Research, Cancro; terapia bersaglio; recettori tirosino chinasi, recettori tirosino chinasi, Pyridines, Antineoplastic Agents, terapia bersaglio, Binding, Competitive, Piperazines, Cancro, Inhibitory Concentration 50, Mice, Adenosine Triphosphate, Animals, Humans, Cell Proliferation, Phenylurea Compounds, Benzenesulfonates, Proto-Oncogene Proteins c-sis, Proto-Oncogene Proteins c-kit, Pyrimidines, Oncology, Benzamides, Mutation, Imatinib Mesylate, Interleukin-3

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Green
bronze