Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Antimalarial Drug Quinine Disrupts Tat2p-mediated Tryptophan Transport and Causes Tryptophan Starvation

Authors: Combiz, Khozoie; Richard J, Pleass; Simon V, Avery;

The Antimalarial Drug Quinine Disrupts Tat2p-mediated Tryptophan Transport and Causes Tryptophan Starvation

Abstract

Quinine is a major drug of choice for the treatment of malaria. However, the primary mode of quinine action is unclear, and its efficacy is marred by adverse reactions among patients. To help address these issues, a genome-wide screen for quinine sensitivity was carried out using the yeast deletion strain collection. Quinine-sensitive mutants identified in the screen included several that were defective for tryptophan biosynthesis (trp strains). This sensitivity was confirmed in independent assays and was suppressible with exogenous Trp, suggesting that quinine caused Trp starvation. Accordingly, quinine was found to inhibit [(3)H]Trp uptake by cells, and the quinine sensitivity of a trp1Delta mutant could be rescued by overexpression of Trp permeases, encoded by TAT1 and TAT2. The site of quinine action was identified specifically as the high affinity Trp/Tyr permease, Tat2p, with which quinine associated in a Trp-suppressible manner. A resultant action also on Tyr levels was reflected by the Tyr-suppressible quinine hypersensitivity of an aro7Delta deletion strain, which is auxotrophic for Tyr (and Phe). The present genome-wide dataset provides an important resource for discovering modes of quinine toxicity. That potential was validated with our demonstration that Trp and Tyr uptake via Tat2p is a major target of cellular quinine toxicity. The results also suggest that dietary tryptophan supplements could help to avert the toxic effects of quinine.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Amino Acid Transport Systems, Quinine, Tryptophan, Biological Transport, Saccharomyces cerevisiae, Tritium, Antimalarials, Drug Resistance, Fungal, Drug Design, Mutation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
gold