Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Cell Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant and Cell Physiology
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

AtMRD1 and AtMRU1, Two Novel Genes with Altered mRNA Levels in the Methionine Over-Accumulating mto1-1 Mutant of Arabidopsis thaliana

Authors: Goto, D.B.; Naito, S.;

AtMRD1 and AtMRU1, Two Novel Genes with Altered mRNA Levels in the Methionine Over-Accumulating mto1-1 Mutant of Arabidopsis thaliana

Abstract

The mto1-1 mutant of Arabidopsis thaliana over-accumulates soluble methionine (Met) up to 40-fold higher than that in its Col-0 wild type. In order to identify genes regulated by altered Met concentrations, microarray analysis of gene expression in young rosettes and developing siliques of the mto1-1 mutant were performed. Expression of selected genes was then examined in detail in three developmental stages of the mto1-1 mutant using a combination of Northern hybridisation analysis and real-time PCR. Eight genes were identified that had altered mRNA accumulation levels in the mto1-1 mutant compared to that in wild-type plants. Three of the genes have known roles in plant development unrelated to amino acid biosynthesis. One other gene up-regulated specifically in mto1-1 rosettes shared similarity with the embryo-specific protein 3 (ATS3). Two novel genes, referred to as AtMRD1 and AtMRU1, were also identified that were expressed in a developmental manner in wild-type Col-0 and do not share sequence similarity with genes of known function. AtMRD1 was strongly down-regulated in both rosette and young silique tissues of the mto1-1 mutant. AtMRU1 was up-regulated approximately 3-fold in young mto1-1 rosettes and exhibited a developmental response to the mto1-1 mutation.

Keywords

580, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Gene Expression Regulation, Developmental, Blotting, Northern, Methionine, Xylosidases, Gene Expression Regulation, Plant, Sequence Analysis, Protein, Mutation, Amino Acid Sequence, RNA, Messenger, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Average
bronze