Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex

Authors: Huck Hui, Ng; François, Robert; Richard A, Young; Kevin, Struhl;

Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex

Abstract

Genome-wide location analysis indicates that the yeast nucleosome-remodeling complex RSC has ∼700 physiological targets and that the Rsc1 and Rsc2 isoforms of the complex behave indistinguishably. RSC is associated with numerous tRNA promoters, suggesting that the complex is recruited by the RNA polymerase III transcription machinery. At RNA polymerase II promoters, RSC specifically targets several gene classes, including histones, small nucleolar RNAs, the nitrogen discrimination pathway, nonfermentative carbohydrate metabolism, and mitochondrial function. At the histoneHTA1/HTB1 promoter, RSC recruitment requires the Hir1 and Hir2 corepressors, and it is associated with transcriptional inactivity. In contrast, RSC binds to promoters involved in carbohydrate metabolism in response to transcriptional activation, but prior to association of the Pol II machinery. Therefore, the RSC complex is generally recruited to Pol III promoters and it is specifically recruited to Pol II promoters by transcriptional activators and repressors.

Keywords

Transcriptional Activation, Genome, Saccharomyces cerevisiae Proteins, Time Factors, Dose-Response Relationship, Drug, Transcription, Genetic, Nitrogen, RNA Polymerase III, Precipitin Tests, Nucleosomes, DNA-Binding Proteins, Histones, Protein Isoforms, Promoter Regions, Genetic, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    236
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
236
Top 10%
Top 1%
Top 1%
Published in a Diamond OA journal