Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Article . 2004
License: CC BY
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Article . 2004
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2004
License: CC BY
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2004
Data sources: HAL INRAE
Journal of Experimental Botany
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions

Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs

Authors: Massonneau, A.; Houba-Hérin, Nicole; Pethe, C.; Madzak, Catherine; Falque, Matthieu; Mercy, Maxime; Kopecný, David; +3 Authors

Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs

Abstract

Cytokinin oxidases (CKOs) play a major role in the regulation of hormone levels in plants by irreversibly degrading cytokinins. Two new cDNAs from maize (CKO2 and CKO3) were cloned and CKO activity of a recombinant CKO3 enzyme was demonstrated. CKO2 and CKO3 encode flavoproteins with 93% identity among each other compared with 45% identity with CKO1. The respective genes were mapped to BIN 3.05/06 and BIN 8.06 which belong to duplicated regions of the maize genome. For a better understanding of the role of CKO2 and CKO3 in maize development, their expression profiles were analysed in different organs and during kernel development via semi-quantitative RT-PCR. Different spatial and temporal expression patterns were observed for the two genes, as well as for CKO1 and two additional genes CKO4 and CKO5. CKO2 to CKO5 genes were mainly expressed in vegetative tissues, with unique expression patterns. CKO1 was most strongly expressed in the kernel. All five genes were expressed at early stages of kernel development, a period when a peak in cytokinin levels and a high cell division rate in the endosperm have been described. However, each gene had its own expression profile with a major difference concerning the onset of expression.

Keywords

580, 570, DNA, Complementary, Organisms, Genetically Modified, hormone, oxidase, 500, Gene Expression, Yarrowia, [SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics, maize, Genes, Plant, Zea mays, [SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics, ADNC, cytokinin, expression, [SDV.BV]Life Sciences [q-bio]/Vegetal Biology, [SDV.BV] Life Sciences [q-bio]/Vegetal Biology, Oxidoreductases, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
hybrid