Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation

Authors: Toyo-oka, Kazuhito; Mori, Daisuke; Yano, Yoshihisa; Shiota, Masayuki; Iwao, Hiroshi; Goto, Hidemasa; Inagaki, Masaki; +5 Authors

Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation

Abstract

Protein phosphatase 4 catalytic subunit (PP4c) is a PP2A-related protein serine/threonine phosphatase with important functions in a variety of cellular processes, including microtubule (MT) growth/organization, apoptosis, and tumor necrosis factor signaling. In this study, we report that NDEL1 is a substrate of PP4c, and PP4c selectively dephosphorylates NDEL1 at Cdk1 sites. We also demonstrate that PP4c negatively regulates Cdk1 activity at the centrosome. Targeted disruption of PP4c reveals disorganization of MTs and disorganized MT array. Loss of PP4c leads to an unscheduled activation of Cdk1 in interphase, which results in the abnormal phosphorylation of NDEL1. In addition, abnormal NDEL1 phosphorylation facilitates excessive recruitment of katanin p60 to the centrosome, suggesting that MT defects may be attributed to katanin p60 in excess. Inhibition of Cdk1, NDEL1, or katanin p60 rescues the defective MT organization caused by PP4 inhibition. Our work uncovers a unique regulatory mechanism of MT organization by PP4c through its targets Cdk1 and NDEL1 via regulation of katanin p60 distribution.

Keywords

Adenosine Triphosphatases, Cell Nucleus, Centrosome, Male, Mice, Knockout, Insecta, Down-Regulation, Microtubules, Cell Line, Enzyme Activation, Mice, Catalytic Domain, CDC2 Protein Kinase, Animals, Humans, Female, Carrier Proteins, Katanin, Research Articles, Cytoskeleton, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Green
bronze