Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurotrau...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurotrauma
Article . 2002 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions

Rapid Subcellular Redistribution of Bax Precedes Caspase-3 and Endonuclease Activation during Excitotoxic Neuronal Apoptosis in Rat Brain

Authors: Lee J. Martin; Josephine Lok;

Rapid Subcellular Redistribution of Bax Precedes Caspase-3 and Endonuclease Activation during Excitotoxic Neuronal Apoptosis in Rat Brain

Abstract

Neuronal apoptosis is induced prominently in the newborn rodent brain by glutamate receptor excitotoxicity and related insults, including trauma and hypoxia-ischemia. However, the molecular mechanisms of this neurodegeneration are unclear. We tested the hypothesis that changes in the subcellular distribution of the proapoptotic protein Bax precede the activation of downstream apoptosis-effector mechanisms such as caspase-3 cleavage and endonuclease activation during the progression of excitotoxic neuronal apoptosis in the striatum of newborn rat. Kainic acid (4 nmol) was injected into striatum of anesthetized 7-day-old rats, and the animals were killed at 2, 6, 12, and 24 h postinsult. Controls were age-matched, vehicle-injected, or naive rats. Counts of ultrastructurally confirmed striatal neuron apoptosis in brain sections were highest at 24 h. Striatal tissue was microdissected and fractionated into cytosolic, mitochondrial-, and nuclear-enriched compartments. Immunoblots showed that Bax translocates from the cytosol fraction to the mitochondrial fraction, with maximal translocation by 2 h in the absence of changes in mitochondrial accumulation. Cleaved caspase-3 levels increase progressively in both cytosolic and mitochondrial fractions between 6 and 24 h. Cleaved caspase-3 accumulates in apoptotic striatal neurons as shown by immunolocalization. Internucleosomal fragmentation of DNA coincides with caspase-3 cleavage. We conclude that rapid translocation of Bax to mitochondria precedes caspase-3 and endonuclease activation during excitotoxic neuronal apoptosis in newborn rat brain and that initiation of this death cascade occurs within 2 h after glutamate receptor activation.

Related Organizations
Keywords

Neurons, Kainic Acid, Caspase 3, Brain, Apoptosis, Cell Differentiation, Endonucleases, Mitochondria, Rats, Enzyme Activation, Rats, Sprague-Dawley, Animals, Newborn, Proto-Oncogene Proteins c-bcl-2, Pregnancy, Caspases, Proto-Oncogene Proteins, Excitatory Amino Acid Agonists, Animals, Female, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%