Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

IKK interacts with rictor and regulates mTORC2

Authors: Jun Liu; Yun-Feng Li; Ming Li; Xiaochun Bai; Jun Lin; Er-Yong Lai; Chunhong Jia; +2 Authors

IKK interacts with rictor and regulates mTORC2

Abstract

mTORC2, the mammalian target of rapamycin complex 2 is activated by upstream growth factors, and performs two major functions, phosphorylation of AKT at the serine of 473 and cell cycle-dependent organization of actin cytoskeleton. However, the mechanisms through which mTORC2 is triggered by these signals remain unclear. We demonstrated, for the first time, that inhibitor of nuclear factor κ-B kinase (IKK) interacted with rictor and regulated mTORC2 activity. Not only endogenously, but ectopically expressed IKK α and IKK β physically interacted with rictor. An in vitro binding assay revealed that rictor interacted with IKKα and IKKβ from amino acids 999 to 1397. Moreover, chemical inhibition of IKK, knockdown of IKK by small interference RNA (siRNA), or ectopic expression of kinase-dead IKK (IKK KD) repressed phosphorylation of AKT (S473) in a variety of cell lines and decreased the kinase activity of mTORC2. In NIH 3T3 cells, inhibition of IKK also reduced phosphorylation of protein kinase α (PKCα) (S657) and resulted in disorganization of actin cytoskeleton. Interestingly, the interaction between IKKα/β and rictor was increased, while the mTOR-rictor association was attenuated by inhibition of IKK. We identified a novel signaling mechanism for the regulation of mTORC2 by IKK: IKK interacted with rictor and regulated the function of mTORC2 including phosphorylation of AKT (S473) and organization of actin cytoskeleton. Inactivated IKK interacted with rictor and competed against mTOR, which resulted in a reduced mTORC2 level and a decrease in mTORC2 activity.

Related Organizations
Keywords

TOR Serine-Threonine Kinases, Cell Cycle, Mechanistic Target of Rapamycin Complex 2, I-kappa B Kinase, Actin Cytoskeleton, Mice, Rapamycin-Insensitive Companion of mTOR Protein, Gene Expression Regulation, Cell Line, Tumor, Multiprotein Complexes, NIH 3T3 Cells, Animals, Humans, Phosphorylation, RNA, Small Interfering, Carrier Proteins, Proto-Oncogene Proteins c-akt, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%