Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Microbiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region

Authors: Mccarthy, John; Vilela, Cristina; McCarthy, J. E G;

Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region

Abstract

SummaryWe review how the expression of fungal mRNAs can be controlled by ribosome interactions with short upstream open reading frames (uORFs) within the 5′untranslated region. The efficiency of uAUG recognition modulates the impact of a uORF but steps during and after translation of the uORF also influence uORF function. The post‐termination behaviour of ribosomes, therefore, plays a major role in determining the expression level of these main ORFs. Translation of a uORF can produce a cis‐acting peptide that causes effector molecule‐dependent stalling of the ribosomes at the end of the uORF. In other cases it is the length or position, or other features of the uORF, rather than the peptide it encodes, that determine the efficiency with which ribosomes reinitiate translation downstream of it. Whether the form of the ribosome that resumes scanning after termination is the 40S subunit alone or the entire 80S ribosome is not known. Translation of the uORF can also control gene expression by affecting the stability of the mRNA. Finally, trans‐acting factors may participate in the regulatory mechanisms. Future work will need not only to provide more information on the mechanisms underlying the known cases of uORF‐mediated control but also to define the full complement of uORF‐containing mRNAs in at least one fungal organism.

Related Organizations
Keywords

Open Reading Frames, Saccharomyces cerevisiae Proteins, Gene Expression Regulation, Fungal, Humans, Saccharomyces cerevisiae, 5' Untranslated Regions, Codon, Peptides, Ribosomes, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    137
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
137
Top 10%
Top 1%
Top 10%
bronze