Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Copenh...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AJP Heart and Circulatory Physiology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant

Authors: Yuan, Lei; Koivumaki, Jussi; Liang, Bo; Lorentzen, Lasse G; Tang, Chuyi; Andersen, Martin N; Svendsen, Jesper H; +5 Authors

Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant

Abstract

Brugada syndrome (BrS) is a rare inherited disease that can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1–4 subunits have been linked to this disease. Here we investigated differences in expression and function between Navβ1 and Navβ1b and whether the H162P/Navβ1b mutation found in a BrS patient is likely to be the underlying cause of disease. The impact of Navβ subunits was investigated by patch-clamp electrophysiology, and the obtained in vitro values were used for subsequent in silico modeling. We found that Navβ1b transcripts were expressed at higher levels than Navβ1 transcripts in the human heart. Navβ1 and Navβ1b coexpressed with Nav1.5 induced a negative shift on steady state of activation and inactivation compared with Nav1.5 alone. Furthermore, Navβ1b was found to increase the current level when coexpressed with Nav1.5, Navβ1b/H162P mutated subunit peak current density was reduced by 48% (−645 ± 151 vs. −334 ± 71 pA/pF), V1/2 steady-state inactivation shifted by −6.7 mV (−70.3 ± 1.5 vs. −77.0 ± 2.8 mV), and time-dependent recovery from inactivation slowed by >50% compared with coexpression with Navβ1b wild type. Computer simulations revealed that these electrophysiological changes resulted in a reduction in both action potential amplitude and maximum upstroke velocity. The experimental data thereby indicate that Navβ1b/H162P results in reduced sodium channel activity functionally affecting the ventricular action potential. This result is an important replication to support the notion that BrS can be linked to the function of Navβ1b and is associated with loss-of-function of the cardiac sodium channel.

Keywords

Patch-Clamp Techniques, Heart Ventricles, Action Potentials, CHO Cells, Voltage-Gated Sodium Channel beta-1 Subunit, Transfection, Sodium Channels, NAV1.5 Voltage-Gated Sodium Channel, Electrophysiology, Cricetulus, Mutation, Animals, Humans, Protein Isoforms, Genetic Predisposition to Disease, RNA, Messenger, Brugada Syndrome

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%