Heterotrimeric Kinesin-2 (KIF3) Mediates Transition Zone and Axoneme Formation of Mouse Photoreceptors
Heterotrimeric Kinesin-2 (KIF3) Mediates Transition Zone and Axoneme Formation of Mouse Photoreceptors
Anterograde intraflagellar transport (IFT) employing kinesin-2 molecular motors has been implicated in trafficking of photoreceptor outer segment proteins. We generated embryonic retina-specific (prefix "emb") and adult tamoxifen-induced (prefix "tam") deletions of KIF3a and IFT88 in adult mice to study photoreceptor ciliogenesis and protein trafficking. In (emb)Kif3a(-/-) and in (emb)Ift88(-/-) mice, basal bodies failed to extend transition zones (connecting cilia) with outer segments, and visual pigments mistrafficked. In contrast, (tam)Kif3a(-/-) and (tam)Ift88(-/-) photoreceptor axonemes disintegrated slowly post-induction, starting distally, but rhodopsin and cone pigments trafficked normally for more than 2 weeks, a time interval during which the outer segment is completely renewed. The results demonstrate that visual pigments transport to the retinal outer segment despite removal of KIF3 and IFT88, and KIF3-mediated anterograde IFT is responsible for photoreceptor transition zone and axoneme formation.
- University of Utah United States
- University of Utah Health Care United States
- Huntsman Cancer Institute United States
- University of Alabama at Birmingham United States
Mice, Knockout, Mice, Protein Transport, Rhodopsin, Axoneme, Tumor Suppressor Proteins, Retinal Cone Photoreceptor Cells, Animals, Kinesins, Basal Bodies
Mice, Knockout, Mice, Protein Transport, Rhodopsin, Axoneme, Tumor Suppressor Proteins, Retinal Cone Photoreceptor Cells, Animals, Kinesins, Basal Bodies
23 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
