Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2011 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Computational and Experimental Analysis Reveals a Requirement for Eosinophil-Derived IL-13 for the Development of Allergic Airway Responses in C57BL/6 Mice

Authors: Elizabeth R, Walsh; Juilee, Thakar; Kindra, Stokes; Fei, Huang; Reka, Albert; Avery, August;

Computational and Experimental Analysis Reveals a Requirement for Eosinophil-Derived IL-13 for the Development of Allergic Airway Responses in C57BL/6 Mice

Abstract

Abstract Eosinophils are found in the lungs of humans with allergic asthma, as well as in the lungs of animals in models of this disease. Increasing evidence suggests that these cells are integral to the development of allergic asthma in C57BL/6 mice. However, the specific function of eosinophils that is required for this event is not known. In this study, we experimentally validate a dynamic computational model and perform follow-up experimental observations to determine the mechanism of eosinophil modulation of T cell recruitment to the lung during development of allergic asthma. We find that eosinophils deficient in IL-13 were unable to rescue airway hyperresponsiveness, T cell recruitment to the lungs, and Th2 cytokine/chemokine production in ΔdblGATA eosinophil-deficient mice, even if Th2 cells were present. However, eosinophil-derived IL-13 alone was unable to rescue allergic asthma responses in the absence of competence of other IL-13–producing cells. We further computationally investigate the role of other cell types in the production of IL-13, which led to the various predictions including early and late pulses of IL-13 during airway hyperresponsiveness. These experiments suggest that eosinophils and T cells have an interdependent relationship, centered on IL-13, which regulates T cell recruitment to the lung and development of allergic asthma.

Related Organizations
Keywords

Inflammation, Mice, Knockout, Mice, Inbred BALB C, Interleukin-13, Ovalbumin, Airway Resistance, Models, Immunological, Lymphocyte Activation, Eosinophils, Mice, Inbred C57BL, Disease Models, Animal, Mice, Random Allocation, Th2 Cells, Cell Movement, Respiratory Hypersensitivity, Animals, Computer Simulation, Bronchial Hyperreactivity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
bronze