Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Medical Genetics Part A
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions

Typical cMRI pattern as diagnostic clue for D‐bifunctional protein deficiency without apparent biochemical abnormalities in plasma

Authors: Gronborg, Sabine; Kraetzner, Ralph; Spiegler, Juliane; Ferdinandusse, Sacha; Wanders, Ronald J. A.; Waterham, Hans R.; Gärtner, Jutta;

Typical cMRI pattern as diagnostic clue for D‐bifunctional protein deficiency without apparent biochemical abnormalities in plasma

Abstract

AbstractD‐bifunctional protein deficiency (DBPD) is an autosomal recessive disease caused by a defect in peroxisomal β‐oxidation. The majority of patients suffer from a severe neurological disease with neonatal hypotonia and seizures and die within the first 2 years of life. Few patients show milder clinical phenotypes with prolonged survival. The diagnosis relies on the clinical presentation, measurement of peroxisomal markers, including very long chain fatty acids (VLCFA) in plasma, followed by enzymatic studies in fibroblasts and genetic testing. Diagnosis can be difficult to establish in milder cases, especially if VLCFA concentration in plasma is not or only mildly elevated. We report on siblings in which initial measurement of plasma VLCFA did not indicate a peroxisomal disease. Nevertheless, cMRI showed a pattern typical for an inborn peroxisomal disease with cerebral and cerebellar leukencephalopathy, perisylvic polymicrogyria, and frontoparietal pachygyria. Repeated measurements of peroxisomal metabolites in plasma prompted by the cMRI findings showed values in the upper normal or mildly elevated range and led to further diagnostic steps. The diagnosis of a type III DBPD with a missense mutation (T15A) in the HSD17B4 gene, coding for D‐bifunctional protein (DBP), could be established. We conclude that a typical “peroxisomal pattern” in cMRI including cerebral and cerebellar leukencephalopathy, perisylvic polymicrogyria and pachygyria is a valuable clue to the diagnosis of DBPD, especially in cases with no or only very mild abnormalities in plasma. © 2010 Wiley‐Liss, Inc.

Countries
Germany, Netherlands
Keywords

Male, 17-Hydroxysteroid Dehydrogenases, DNA Mutational Analysis, Infant, Newborn, Fluorescent Antibody Technique, Magnetic Resonance Imaging, Cell Line, Pregnancy, Child, Preschool, Peroxisomes, Humans, Female, Lymphocytes, Nervous System Diseases, Child, Peroxisomal Multifunctional Protein-2, Biomarkers, Hydro-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Green