The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals
pmid: 15964060
The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals
The lifespan of the nematode, Caenorhabditis elegans, can be extended by mutations affecting components of the insulin-like growth factor (IGF) signaling cascade or by overexpression of SIR2, an NAD+-dependent protein deacetylase. The mammalian homologue of SIR2, Sirt1, has been shown to modulate the activity of FoxO, a transcription factor that is downstream of the IGF signaling system. These results suggest that Sirt1 ought to affect the IGF pathway. We report here evidence that this is the case in mice. The loss of Sirt1 protein in mice results in increased expression of the IGF binding protein IGFBP1, a secreted modulator of IGF function. A number of the anatomical characteristics of Sirt1-null mice closely resemble those of transgenic mice overexpressing IGFBP1. Our data suggest that Sirt1 is part of a regulatory loop that limits the production of IGFBP1 thereby modulating IGF signaling.
- University of Ottawa Canada
Insulin-Like Growth Factor Binding Protein 1, Mice, Sirtuin 1, Somatomedins, Longevity, Animals, Sirtuins, Caenorhabditis elegans, Mice, Mutant Strains, Signal Transduction, Transcription Factors
Insulin-Like Growth Factor Binding Protein 1, Mice, Sirtuin 1, Somatomedins, Longevity, Animals, Sirtuins, Caenorhabditis elegans, Mice, Mutant Strains, Signal Transduction, Transcription Factors
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).99 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
