Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy
Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.
- Duke University United States
- Duke Medical Center United States
- Duke University Health System United States
- Duke University Hospital United States
Male, RNA-Binding Proteins, Repressor Proteins, Disease Models, Animal, Animals, Drosophila Proteins, Humans, Drosophila, Female, RNA Splicing Factors, Cardiomyopathies, Gene Deletion, Signal Transduction
Male, RNA-Binding Proteins, Repressor Proteins, Disease Models, Animal, Animals, Drosophila Proteins, Humans, Drosophila, Female, RNA Splicing Factors, Cardiomyopathies, Gene Deletion, Signal Transduction
52 Research products, page 1 of 6
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2016IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
