Bi-directional Regulation of Ser-985 Phosphorylation of c-Met via Protein Kinase C and Protein Phosphatase 2A Involves c-Met Activation and Cellular Responsiveness to Hepatocyte Growth Factor
pmid: 15075332
Bi-directional Regulation of Ser-985 Phosphorylation of c-Met via Protein Kinase C and Protein Phosphatase 2A Involves c-Met Activation and Cellular Responsiveness to Hepatocyte Growth Factor
Previous studies indicated that treatment of cells with 12-O-tetradecanoylphorbol-13-acetate induced phosphorylation of Ser-985 at the juxtamembrane of c-Met, the receptor tyrosine kinase for hepatocyte growth factor (HGF), and this was associated with decreased tyrosine phosphorylation of c-Met. However, the regulatory mechanisms and the biological significance of the Ser-985 phosphorylation in c-Met remain unknown. When A549 human lung cancer cells were exposed to oxidative stress with H(2)O(2), H(2)O(2) treatment induced phosphorylation of Ser-985, but this was abrogated by an inhibitor for protein kinase C (PKC). Likewise, treatment of cells with NaF (an inhibitor of protein phosphatases) allowed for phosphorylation of Ser-985, and a protein phosphatase responsible for dephosphorylation of Ser-985 was identified to be protein phosphatase 2A (PP2A). The effects of PKC inhibitors revealed that PKCdelta and -epsilon were responsible for the Ser-985 phosphorylation of c-Met, and pull-down analysis indicated that associations of PKCdelta and -epsilon with c-Met may be involved in the regulation of Ser-985 phosphorylation of c-Met. Instead, PP2A was constitutively associated with c-Met, whereas its activity to dephosphorylate Ser-985 of c-Met was decreased when cells were exposed to H(2)O(2). Addition of HGF to A549 cells in culture induced c-Met tyrosine phosphorylation, the result being mitogenic response and cell scattering. In contrast, in the presence of H(2)O(2) stress, HGF-dependent tyrosine phosphorylation of c-Met was largely suppressed with a reciprocal relationship to Ser-985 phosphorylation, and this event was associated with abrogation of cellular responsiveness to HGF. These results indicate that Ser-985 phosphorylation of c-Met is bi-directionally regulated through PKC and PP2A, and the Ser-985 phosphorylation status may provide a unique mechanism that confers cellular responsiveness/unresponsivenss to HGF, depending on extracellular conditions.
Hepatocyte Growth Factor, Blotting, Western, Hydrogen Peroxide, Proto-Oncogene Proteins c-met, Models, Biological, Precipitin Tests, Enzyme Activation, Oxidative Stress, Bromodeoxyuridine, Cell Line, Tumor, Phosphoprotein Phosphatases, Serine, Humans, Protein Isoforms, Protein Phosphatase 2, Enzyme Inhibitors, Phosphorylation, Coloring Agents, Protein Kinase C, Protein Binding
Hepatocyte Growth Factor, Blotting, Western, Hydrogen Peroxide, Proto-Oncogene Proteins c-met, Models, Biological, Precipitin Tests, Enzyme Activation, Oxidative Stress, Bromodeoxyuridine, Cell Line, Tumor, Phosphoprotein Phosphatases, Serine, Humans, Protein Isoforms, Protein Phosphatase 2, Enzyme Inhibitors, Phosphorylation, Coloring Agents, Protein Kinase C, Protein Binding
26 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
