Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
MPG.PuRe
Article . 2009
Data sources: MPG.PuRe
versions View all 3 versions

Transport of hypoxia-inducible factor HIF-1α into the nucleus involves importins 4 and 7

Authors: Chachami, G.; Paraskeva, E.; Mingot, J.; Braliou, G.; Görlich, D.; Simons, G.;

Transport of hypoxia-inducible factor HIF-1α into the nucleus involves importins 4 and 7

Abstract

Hypoxia-inducible transcription factor 1 (HIF-1) mediates the cellular response to hypoxia. HIF-1 activity is controlled via the synthesis, degradation or intracellular localization of its alpha subunit. HIF-1alpha contains a C-terminal bipartite basic NLS that interacts with importins alpha. We have recently shown that HIF-1alpha also contains an atypical hydrophobic CRM1- and phosphorylation-dependent NES and can therefore shuttle in and out of the nucleus. We now report that C-terminal NLS mutants of HIF-1alpha can still enter the nucleus when CRM1-dependent nuclear export is inhibited, indicating that HIF-1alpha contains an additional functional nuclear import signal. Using an in vitro nuclear import assay, we further show that importins 4 and 7 accomplish nuclear import of HIF-1alpha more efficiently than the classical importin alpha/beta NLS receptor. Binding assays confirmed the specific physical interaction between HIF-1alpha and importins 4 and 7. Moreover, the interaction of importin 7 with HIF-1alpha is mapped at its N-terminal part encompassing the bHLH-PAS(A) domain. By expressing functional HIF-1 in yeast, we show that Nmd5, the yeast orthologue of importin 7, is required for HIF-1alpha nuclear accumulation and activity. Taken together, our data show that shuttling of HIF-1alpha between cytoplasm and nucleus is a complex process involving several members of the nuclear transport receptor family.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Active Transport, Cell Nucleus, Humans, Membrane Transport Proteins, Receptors, Cytoplasmic and Nuclear, Karyopherins, Hypoxia-Inducible Factor 1, alpha Subunit, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%