Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Oxidative stress in Caenorhabditis elegans : protective effects of the Omega class glutathione transferase ( GSTO‐1 )

Authors: Cora, Burmeister; Kai, Lüersen; Alexander, Heinick; Ayman, Hussein; Marzena, Domagalski; Rolf D, Walter; Eva, Liebau;

Oxidative stress in Caenorhabditis elegans : protective effects of the Omega class glutathione transferase ( GSTO‐1 )

Abstract

ABSTRACT To elucidate the function of Omega class glutathione transferases (GSTs) (EC 2.5.1.18) in multicellular organisms, the GSTO‐1 from Caenorhabditis elegans (GSTO‐1; C29E4.7) was investigated. Disc diffusion assays using Escherichia coli overexpressing GSTO‐1 provided a test of resistance to long‐term exposure under oxidative stress. After affinity purification, the recombinant GSTO‐1 had minimal catalytic activity toward classic GST substrates but displayed significant thiol oxidoreductase and dehydroascorbate reductase activity. Microinjection of the GSTO‐1 ‐promoter green fluorescent protein construct and immunolocalization by electron microscopy localized the protein exclusively in the intestine of all postembryonic stages of C. elegans. Deletion analysis identified an ~300‐nucleotide sequence upstream of the ATG start site necessary for GSTO‐1 expression. Site‐specific mutagenesis of a GATA transcription factor binding motif in the minimal promoter led to the loss of reporter expression. Similarly, RNA interference (RNAi) of Elt‐2 indicated the involvement of this gut‐specific transcription factor in GSTO‐1 expression. Transcriptional up‐regulation under stress conditions of GSTO‐1 was confirmed by analyzing promoter‐reporter constructs in transgenic C. elegans strains. To investigate the function of GSTO‐1 in vivo , transgenic animals overexpressing GSTO‐1 were generated exhibiting an increased resistance to juglone‐, paraquat‐, and cumene hydroperoxide‐induced oxidative stress. Specific silencing of the GSTO‐1 by RNAi created worms with an increased sensitivity to several prooxidants, arsenite, and heat shock. We conclude that the stress‐responsive GSTO‐1 plays a key role in counteracting environmental stress.—Burmeister, C., Lüersen, K., Heinick, A., Hussein, A., Domagalski, M., Walter, R. D., Liebau, E. Oxidative stress in Caenorhabditis elegans : protective effects of the Omega class glutathione transferase ( GSTO‐1 ). FASEB J. 22, 343–354 (2008)

Related Organizations
Keywords

Molecular Sequence Data, GATA Transcription Factors, Sensitivity and Specificity, Recombinant Proteins, Oxidative Stress, Gene Expression Regulation, Microscopy, Electron, Transmission, Genes, Reporter, Animals, Humans, RNA Interference, Amino Acid Sequence, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Microscopy, Immunoelectron, Promoter Regions, Genetic, Sequence Alignment, Gene Deletion, Phylogeny, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 10%