Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 6 versions

Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity

Authors: Glavic Maurer, Álvaro; Molnar, Cristina; Cotoras, Darko; Celis, José F. de;

Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity

Abstract

Cell division rates and apoptosis sculpt the growing organs, and its regulation implements the developmental programmes that define organ size and shape. The balance between oncogenes and tumour suppressors modulate the cell cycle and the apoptotic machinery to achieve this goal, promoting and restricting proliferation or, in certain conditions, inducing the apoptotic programme. Analysis of human cancer cells with mutation in AXIN gene has uncovered the potential function of AXUD1 as a tumour suppressor. It has been described that Human AXUD1 is a nuclear protein. We find that a DAxud1-GFP fusion protein is localised to the nucleus during interphase, where it accumulates associated to the nuclear envelope, but becomes distributed in a diffused pattern in the nucleus of mitotic cells. We have analysed the function of the Drosophila AXUD1 homologue, and find that DAxud1 behaves as a tumour suppressor that regulates the proliferation rhythm of imaginal cells. Knocking down the activity of DAxud1 enhances the proliferation of these cells, causing in addition a reduction in cell size. Conversely, the increase in DAxud1 expression impedes cell cycle progression at mitosis through disturbance of Cdk1 activity, and induces the apoptosis of these cells in a JNK-dependent manner.

Country
Chile
Keywords

Embryology, Molecular Sequence Data, Apoptosis, Cell Cycle Proteins, CDC2 Protein Kinase, Animals, Drosophila Proteins, Wings, Animal, Amino Acid Sequence, Cell Proliferation, Cell Size, Tumor Suppressor Proteins, Cell Cycle, JNK Mitogen-Activated Protein Kinases, AXUD1 tumour suppressor, Gene Expression Regulation, Developmental, Organ Size, Protein Transport, Drosophila melanogaster, Phenotype, Protein Tyrosine Phosphatases, Developmental Biology, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Average
Green
hybrid
Related to Research communities
Cancer Research