Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Male pheromone–stimulated neurogenesis in the adult female brain: possible role in mating behavior.

Authors: Gloria K, Mak; Emeka K, Enwere; Christopher, Gregg; Tomi, Pakarainen; Matti, Poutanen; Ilpo, Huhtaniemi; Samuel, Weiss;

Male pheromone–stimulated neurogenesis in the adult female brain: possible role in mating behavior.

Abstract

The regulation of female reproductive behaviors may involve memories of male pheromone signatures, formed in part by neural circuitry involving the olfactory bulb and hippocampus. These neural structures are the principal sites of adult neurogenesis; however, previous studies point to their independent regulation by sensory and physiological stimuli. Here we report that the pheromones of dominant (but not subordinate) males stimulate neuronal production in both the olfactory bulb and hippocampus of female mice, which are independently mediated by prolactin and luteinizing hormone, respectively. Neurogenesis induced by dominant-male pheromones correlates with a female preference for dominant males over subordinate males, whereas blocking neurogenesis with the mitotic inhibitor cytosine arabinoside eliminated this preference. These results suggest that male pheromones are involved in regulating neurogenesis in both the olfactory bulb and hippocampus, which may be important for female reproductive success.

Keywords

Male, Mice, Knockout, Neurons, Mice, Inbred ICR, Behavior, Animal, Receptors, Prolactin, Cytarabine, Brain, Nerve Tissue Proteins, Receptors, LH, Mice, Inbred C57BL, Mice, Bromodeoxyuridine, In Situ Nick-End Labeling, Animals, Female, Sex Attractants, Astringents, Immunosuppressive Agents, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    288
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
288
Top 1%
Top 1%
Top 1%